Light Detection In Noble Elements (LIDINE) 2022

Prediction of supernova neutrino signals by detectors and its future challenges

<u>Riya Gaba</u>¹, Jaydip Singh², Vipin Bhatnagar¹, Jyotsna Singh²

¹ Panjab University, Chandigarh , India , ² Lucknow University, Lucknow, India

Contents of my talk

- Introduction
- Motivation
- Theory
 - Supernova neutrinos
 - Energy, production and its detection
 - Neutrino interactions
 - SNOwGLoBES
- Analysis
- Results
- Conclusion
- Future aspects

	 · · · · · · · · · · · · · · · · · · ·	conclusion
Introduction		

- Weakly interacting particles produced when a star reaches the end of its life, carrying away 99% of gravitational energy .
- The order of 10⁵⁹ neutrinos and antineutrinos of all flavors are emitted.
- The current generation of detectors, like, Super-Kamiokande (Super-K), LVD, Borexino, KamLAND, and IceCube, as well as HALO, Daya Bay and NOvA, have ability to detect only a few orders of magnitude of events and the next generation, like, Hyper-Kamiokande (Hyper-K), DUNE, and JUNO will have yet another order of magnitude in reach, as well as richer flavor sensitivity.
- Study using the SNOwGLoBES package is carried out for the calculation of core-collapse neutrino event rates in realistic detectors for different flux models, effects of different parameters on flux and its variation with time

Why study these particles ?

- Relatively reliable messenger of the supernova mechanism
- Give information about the physical conditions at the center of core collapse, which would be otherwise inaccessible
- Future observations of supernova neutrinos will constrain the different theoretical models of core collapse and explosion mechanism
- Can provide early alarm to astronomers to prepare the telescope to capture light from the supernova
- Offer an opportunity to examine neutrino flavor mixing under high-density conditions
- Being sensitive to neutrino mass ordering and mass hierarchy, they can provide information about various neutrino properties

Properties of supernova neutrinos

- Supernova neutrinos are weakly interacting particles produced during core-collapse supernovae explosion releasing 99% of energy of a dying star in the form of neutrinos
- These type of neutrinos have energies of few MeVs ,typically 10-20 MeV
- Luminosity of all species of these neutrinos and anti-neutrinos is approximately same (~ $10^{52} \, \text{erg s}^{-1}$)
- Average energy is of the order 10 MeV
- Neutrino heating is predicted to be responsible for the supernova explosion
- The core-collapse events are the strongest and most frequent source of cosmic neutrinos in the MeV energy range

Introduction	Motivation	Theory	Study	Future aspects	Conclusion
How are t	these proc	duced ?			
• Star at the end o	of its life	Onion like struc	ture Soft	e core (no more fusion/ heat pro	duction)
● Core contracts Σ	> Temperatu	ıre 🕇 💶 🔶 ph	notodissociation of	Fe(absorbs energy) and electron	capture rxn

• Pressure and no. of electron 📕 💴 Onset of core collapse (chandrasekhar limit reached)

• Gravitational energy released in the form of neutrinos

Introduction	Motivation	Theory	Study	Future aspects	Conclusion
How to d	etect ?				

 Almost all methods involves the inverse beta decay reaction for the detection of neutrinos. The reaction is a charged current weak interaction,

Anti -
$$v_e$$
 + p \longrightarrow n + e⁺

- The positron retains most of the energy of the incoming neutrino producing a cone of Cherenkov light, which is detected by photomultiplier tubes (PMT's)
- With current detector sensitivities, it is expected that thousands of neutrino events from a galactic core-collapse supernova would be observed
- Large-scale detectors such as Hyper-Kamiokande or IceCube can detect up to 10⁵ events
- SN1987A is the only supernova detected so far despite having rate of 1-3 per century
- So the next generation of underground experiments, like Hyper-Kamiokande, are designed to be sensitive to neutrinos from supernova explosions as far as Andromeda or beyond

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

About SNOwGLoBES

- To enable fast, informative studies of the physics potential of the detection of supernova neutrinos, there has been developed a simple software and database package to compute expected event rates by folding input fluxes with cross-sections and detector parameters
- Evaluation of relative sensitivities of different detector configuration
- Input fluxes, cross sections, "smearing matrices" and post-smearing efficiencies
- The output is in the form of interaction rates for each channel as a function of neutrino energy, and "smeared" rates as a function of detected energy for each channel (i.e. the spectrum that actually be observed in a detector)

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

FLUX

• Livermore

- 1-D numerical simulation
- based on SN1987A
- From onset of collapse till 18 seconds after core bounce

• Gvkm

- 1st calculations with three flavors of collective and shock wave effects for neutrino propagation
- Uses S matrix formalism, hydrodynamical density profiles
- Pinched

$$\phi(E_{\nu}) = \mathcal{N}\left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} \exp\left[-(\alpha+1)\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right]$$

Ev= Neutrino energy \mathcal{N} : Normalization constant (related to luminosity, ε , in ergs)

<Ev>= Mean neutrino energy (MeV) α : Pinching parameter; large α corresponds to more pinched spectrum

^{1.} future Detection of Supernova Neutrino Burst and Explosion Mechanism by T. Totani, K. Sato, H. E. Dalhed, and J. R. Wilson

^{2.} A dynamical collective calculation of supernova neutrino signals by J.Gava, J. Kneller, C. Volpe, G.C. McLaughlin

^{3.} High-resolution supernova neutrino spectra represented by a simple t by Irene Tamborra, Bernhard Muller, Lorenz Hudepohl, Hans-Thomas Janka, and Georg Rafelt.

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

Garching parameterization

- Flux model that provides parameterization*
- Reproduce observable features

*High-resolution supernova neutrino spectra represented by a simple t by Irene Tamborra, Bernhard Muller, Lorenz Hudepohl, Hans-Thomas Janka, and Georg Rafelt

Introduction

Study

Livermore flux (interacted and observed)

Theory

Gvkm flux (interacted and observed)

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

Flux

Pinched flux (interacted and observed)

• Alpha , average energy , luminosity are three parameters being used for pinched flux and luminosity is assumed to be same for all flavors (5 x 10⁵² erg) while other two can be varied

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

Effect of Average Energy on Flux

Comparing event rates for two detectors

- We compare the event rates for a few detectors for Livermore and GVKM flux models
- When we see the $\nu_{\mu,e} e$ events only, the event rates increase with size of detector.

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

Future aspects

- Detector parameters
 - Overall energy resolution
 - Energy loss due to background
 - Cross-section
 - modelling,
 - uncertainty,
 - shape systematics
 - Uncertainties in post-smearing efficiency in the model
 - Interaction channel identification

IntroductionMotivationTheoryStudyFuture aspectsConclusionConclusion

- Different detectors being flavor sensitive give different neutrino signal, but electron flavor neutrinos are produced more than other flavors in a supernova explosion, so a detector which is sensitive to electron flavor is highly needed (e.g DUNE)
- Average energy has more effect on flux than pinching parameter
- SNOwGLoBES is a powerful tool that can help to better understand the physics of core collapse supernova and various neutrino properties using different flux parameterization, cross-section models and detector parameters !

Thank you for listening

References

- <u>http://www.phy.duke.edu/~schol/snowglobes</u>.
- https://www.mpi-hd.mpg.de/personalhomes/globes/
- "Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment" <u>https://arxiv.org/pdf/2008.06647.pdf</u>
- Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling by L.Hüdepohl, B. Müller, H.-T. Janka, A. Marek, and G. G. Ra elt
- future Detection of Supernova Neutrino Burst and Explosion Mechanism by T. Totani, K. Sato, H. E. Dalhed, and J. R. Wilson
- A dynamical collective calculation of supernova neutrino signals by J.Gava, J. Kneller, C. Volpe, G.C. McLaughlin
- High-resolution supernova neutrino spectra represented by a simple t by Irene Tamborra, Bernhard Muller, Lorenz Hudepohl, Hans-Thomas Janka, and Georg Rafelt.
- Flux true parameters , Resso et al. , <u>https://arxiv.org/abs/1712.05584</u>

Backup slides

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

Flux parameters

- Alpha , average energy , luminosity for electron neutrino ,antineutrino and all other flavors respectively
- Alpha is dimensionless , energies are in MeV , and luminosity is in erg.

10	2	4	6	15	15	15	1.6e52	1.6e52	1.6e52	
2 1	2	3	3	15	15	15	1.6e52	1.6e52	1.6e52	
32	3	2	3	15	15	15	1.6e52	1.6e52	1.6e52	
4 3	3	1	2	15	15	15	1.6e52	1.6e52	1.6e52	
54	3	3	2	15	10	5	1.6e52	1.6e52	1.6e52	
6 5	3	3	3	10	15	15	1.6e52	1.6e52	1.6e52	
76	3	3	3	15	10	15	1.6e52	1.6e52	1.6e52	
87	3	3	3	5	10	15	1.6e52	1.6e52	1.6e52	

SNOwGLoBES flux

Flux in SNOwGLoBES is calculated using ,

$$F(E_{\nu}) = \frac{1}{4\pi d^2} \frac{\varepsilon}{\langle E_{\nu} \rangle} \phi(E_{\nu}, \langle E_{\nu} \rangle, \alpha) \times (\text{binning factor})$$

Where $\phi(E_v, \le, \alpha)$ is defined by,

$$\phi(E_{\nu}, \langle E_{\nu} \rangle, \alpha) = N\left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} \exp\left[-(\alpha + 1)\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right]$$

Where N is given by

$$N = \frac{(\alpha + 1)^{\alpha + 1}}{\langle E_{\nu} \rangle \, \alpha!}$$

Introduction	Motivation	Theory	Study	Future aspects	Conclusion

Parameter fit algorithm

- These parameter define the time dependent fluxes for the analysis
- Using true values spectrum and grid spectrum by simulating different models, one can put constraints on the parameters for better reconstruction of signal by detector

	$ u_{ m e}$	$ar{ u}_{ ext{e}}$	$ u_x$
\mathcal{E}_i^* [10 ⁵³ erg]	$0.5 \in [0.2, 1]$	$0.5 \in [0.2, 1]$	$0.5 \in [0.2, 1]$
$\langle E_i^* \rangle [\text{MeV}]$	$9.5 \in [5, 30]$	$12 \in [5, 30]$	$15.6 \in [5, 30]$
$lpha_i^*$	$2.5 \in [1.5, 3.5]$	$2.5 \in [1.5, 3.5]$	$2.5 \in [1.5, 3.5]$
κ^*		$1 \in [0.8, 1.2]$	

Study

Cross-section graphs

Introduction N	Motivation	Theory	Study	Future aspects	Conclusion

Cross-section models used in SNOwGLoBES

- Neutrino-nucleon scattering model for IBD
- neutrino -electron scattering for elastic scattering
- CRPA model for interaction of neutrino with oxygen
- RPA model for CC interaction with carbon
- χ^2 method for interaction with argon