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Detecting particle interactions in Xenon TPCs

Figure by CH Faham (Brown)
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Dark matter searches using Xenon TPCs

= Most WIMP dark matter searches with xenon TPCs have optimized searches on
neutron recoil energy signatures predicted by canonical dark matter models (<100

keV regime)

— So far, no detection of a WIMP signal in the commonly searched region
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Expanding the search window for WIMP recoils

= Can test aspects of models predicting higher energy nuclear recoils
— Some couplings in effective field theories suppressed at lower recoil energies
— Inelastic WIMP scatters can result in higher energy signals

= Room to improve sensitivity for higher mass WIMPs in canonical models
— Merit in searching for signatures of dark matter in less-explored ranges
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Characterizing light and charge yield of xenon

recoils

= Light and charge yield calibrations inform what S1/S2 sizes are expected from nuclear
recoils at different energies

= Additional higher energy calibrations (>100 keV) would help reduce uncertainties

associated with event reconstruction

= Also need these yields at different drift field strengths to study field dependence

Summary of current light/charge yield measurements in xenon
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The XeNu DT measurement at LLNL

= Collimated monoenergetic (14.1 MeV) beam used to generate nuclear recoils
— Energy endpoint for neutron elastic scatters: 430 keV

= Coincident pulse in a Backing Detector (BD) used to reconstruct scattering

angle/energy
— Seven BDs used to tag scatters associated with different recoil energies

= DT source operated at 4.7E7 neutrons/sec for a total of 40 hours
— Neutron recoils characterized at three different drift fields
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The XeNu Detector

= Dual-phase TPC qr

— 150 g active xenon (5 cm diam., 2.5 cm. high) —— /
— Top: Four 1” Hamamatsu R8520-406 PMTs — gl
— Bottom: One 2” Hamamatsu R8778 PMT ™ SRR .

rings

= High reflectivity PTFE lines active volume |
to increase S1 light yield L
— Improves NR/ER discrimination, time-of-flight - ‘
estimation, and precisely measuring the S1light | PIFE bock
yield yield

Multi-scatter event in XeNeu
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= Field in electron drift and extraction (60-Co calibration)
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Neutron elastic scatter event selection

= Several preliminary cuts applied to select neutron elastic scatters
— Time of flight, LS pulse shape discrimination, Xenon TPC S1/S2 discrimination

= Cuts aggressively remove majority of background gammas and accidentals, providing a

DT Neutrons (sum of all BD coincidences)

pure sample of neutron elastic scatters

Inelastic Scatter
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Fits to S1/S2 distributions in data

0

= Model to perform fits to data Best fits for 2000 V/cm drift field dataset
developed with GEANT4-based k k
39 keV 39 keV
source, and shielding N W
— Detector effects and necessary :
photon/electron counts 0
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= Light/charge yield values - v
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Preliminary light/charge yield estimates

= Measured charge and light yields shown in comparison to past measurements
and predictions from NESTpy v2.3.6

— Higher values than NEST at <200 keV recoil energies, lower than NEST above 200 keV

= Field dependence of data generally in agreement with predictions in NEST

— Inconclusive field dependence for light yield due to uncertainties on measurement
— Charge yield increases as the drift field strength increases
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Conclusions

= Nucleon recoil calibrations are needed for Xenon at energies >100
keV to help improve sensitivity to larger energy scattering signatures
in dark matter

= A measurement of light/charge yields for nuclear recoils up to 426

keV in energy has been completed

— Field-dependent yields measured up to 306 keV

— Field-averaged yields reported at 379 keV and 426 keV due to lower-than-
anticipated statistics

= Light/charge yield measurements will be incorporated into NEST
following final publication of results
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Developing a model for experimental data

7\

= Full GEANT4-based simulation of U
detectors, DT source, and shielding DT Neutrons

= Preliminary cuts equivalent to those

applied in data also applied in simulation
— Time-of-flight

— Neutron scatter in backing detector

— No gamma scatter in xenon TPC

Energy spectra in LXe with different cuts (BD 2)

[ BD2 (92 deg)
1 + TOF cut
1 +NRinLS

= Detector effects and corrections
quantified with calibration data, then W\
applied to simulation using MC i :
techniques to convert to PE/e- counts M%
— Light collection efficiency %

— Electron extraction efficiency
— S1 and S2 drift time dependence corrections

Simulation
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Xe energy [keV]
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Table of measured values in experiment

= TOF systematic quantifies uncertainty due to (n,2n) contamination of primary DT
neutron peak

— Re-evaluate fits using TOF windows on both sides of the primary DT neutron peak ([-2,0] ns and
[0,+2] ns around TOF mean)

= LCE systematic quantified via uncertainty on g1 fit extracted from Doke plot

= EEE systematic uncertainty evaluated for XeNu in previous measurement

scattering recoil Qy Ly
angle energy 0.2 0.76 2.0 0.2 0.76 2.0
(deg.) (keV) kV/ecm | kV/em | kV/cm |Field avg.| TOF sys. | kV/cm | kV/cm | kV/cm |Field avg. | TOF sys.
F0.23 F0.52 F0.50 F5.3% 0.8 F0.5 0.8 F5.5%
36+1 39+3 4.39_8'?2 4.63_8?g 5.04_8.1112 - _fg:;’ 16'2_8'; 15.2_8'; 15.7_8..:; - _fgg)
+0. +0. +0. +1.6% +0. +0. +0. +1.9%
50 + 1 75+4 |3.267018 3547017 36970147 FL6%116.8¥02 | 164702 | 164703 - s
F0.16 F0.15 F0.15 F4.3% 0.5 0.5 F0.5 F3.5%
67 + 2 109+6 |2627016 2877053 10T0 5 i G - 5
F0.08 F0.09 F0.08 F6.4% F0.4 0.3 F0.5 F2.2%
92 2 219+7 |1.667008 [1.827090 [1.037008 T i A S s R I . ]
F0.08 F0.13 F0.07 F2.0% 0.6 F0.7 F1.0 F6.4%
s | 306210 [1257G0 |1asToR [LeeTGR7] - | Tigy [182%0F | 161707 [ 180755 - I
+0.1 +3.1% +0. +8.0%
140 + 2 379+5 - - - 1'12_8'3 “20% - - - 15-7_2.3 —5.1%
+0. +4.6% +1. +4.9%
162 + 2 426 + 2 - - - 1urg | Tise - - - 1855175 | Z10.0%
LCE systematic unc. - +7.4%
EEE systematic unc. +3.0% -
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Drift time correction applied to S1 data

= Collection efficiency of S1 light for top/bottom PMTs is interaction depth-
dependent

= Correction applied to top/bottom PMTs to correct S1 area relative to center of
TPC
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Light Collection Efficiency Measurement

= Fit a 2D Gaussian to the endpoint of several

calibration sources

ST 82
E=W(ny, +n,)=W,, (—-l——)

= Then, fit a line on the S1/energy vs. S2/energy gl g2

space and extract light yield with a line fit

Corrected S1 vs. S2 distribution (R11S34 source)
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Collimator and shielding construction

= DT source emits neutrons in all directions
— Neutrons hitting backing detectors will result
in false xenon-BD coincidence signals
— Neutrons scattering off surrounding
environment form backgrounds for neutrons
directly from source

L 4 7 7 r 4 4 T L 3 L y— ¥

: DT stand frame, anchored
= Stand designed for LLNL DT source sranc rame, anchore and partially shielded

— Lead mounted around source/collimator to
reduce mean energy of off-beam neutrons

— Borated polyethylene and water surrounding
source to slow/stop gammas and neutrons

DT stand frame, constructed

= Entire stand surrounded with borated
water for further neutron/gamma
shielding

— 17 collimator formed using borated :
polyethylene Neutron collimator DT source cave

el
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Neutron-Xenon elastic scattering spectrum

= Expected xenon recoil energies as a function of scattering angle
— Energy endpoint at approximately 425 keV

Reaction summary for n+131Xe—-n+131xe, E(n)=14.1 MeV

e The maximum n energy is 14.1 MeV. The minimum n energy is 13.669 MeV.
« The maximum 13!Xe energy is 0.431 MeV. The minimum !31Xe energy is 0 MeV. The maximum !3!Xe angle is 90 degrees.

KE,4 as a function of 03:

045 %' Xeon+1%'Xe, Ey(n)=14.1 MeV
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Selecting neutron candidate events

= Several handles for discriminating DT Neutron/gamma discrimination in
neutron events from backgrounds backing detectors (commissioning data)

1.2 f

— 51/52 ratio in Xenon TPC GL) E Entries 72596
— Pulse discrimination in $1/S2 pulses 5 E Gammas Moany 09059
. . . . . . = RMS x .34
— Pulse discrimination in backing detectors % 5 RMS Y 005442
— Time-of-flight from Xenon TPC to backing é_? - 60
detector A /F 50
& - 3 40
= Clear neutron/gamma separation o ~Neutrons ®
apparent with PSD in backing detectors oof- .
0.55.-..'.}-...|7....'|. AT I B :

0 100 200 300 400 500 600 700

= S1/S2 separation power with new
reflector will be quantified prior to full Event energy (arb. Unit)
data-taking run
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Uncertainties in lowest recoil energy

= Lowest recoil energy’s Geant4-based model generally did not produce good fits to the

detector data

— Detector was placed at a peak in the inelastic scattering cross-section as predicted by Geant4
— This corresponds to a trough in the elastic scattering cross-section, producing two-peak shape in simulation
— Highly variable cross-section region, and current prediction in ENDF is calculated (not informed by DT data)

= Light/charge vield reported in paper instead evaluated assuming a Gaussian shape, with
light/charge yield calculated directly

— Difference in light/charge yield fits propagated as a systematic uncertainty in final results reported in table

Excess in low-
energy scatters
from passive
materials

Dip in
predicted ES
cross-section
results in two-
hump feature

Simulated energy distribution, lowest
angle LS coincidence scatters

Energy spectra in LXe with different cuts (BD 6)
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S1/S2 distributions, 2000 V/cm data, lowest
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Excess in low-energy scatters in simulation

= Larger counts in low-energy scatters
observed in simulation but not in data

Energy spectra in LXe with all cuts +
scatter in passive mat. (BD 6)

= Excess appears associated with
neutrons which undergo scatters in
passive detector materials prior to

scatter in xenon
— Majority of scatters occur on PTFE or field

104 4

1034

rings M LAl

102 4

= Several possibilities for excess in

pass

pass
1 no

no pa

pas

ive scatter (dTotEDepXe_keV variable)
ive scatter (energy variable)

sive scatter (dTotEDepXe_keV variable)
ssive scatter (energy variable)

Simulation

simulation relative to data
— Uncertainties in cross-section for DT
neutrons on PTFE and copper in field ring
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