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Detecting particle interactions in Xenon TPCs
Figure by CH Faham (Brown)

Charge yield
Light yield
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§ Most WIMP dark matter searches with xenon TPCs have optimized searches on 
neutron recoil energy signatures predicted by canonical dark matter models (<100 
keV regime)
— So far, no detection of a WIMP signal in the commonly searched region

Dark matter searches using Xenon TPCs

WIMP-Nucleon differential count rate for 
several elements (𝜎 = 10!"# 𝑐𝑚$)

Event rate drops 
considerably for 
xenon at >100 
keV scatters
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First WIMP search results from the LZ experiment
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Expanding the search window for WIMP recoils

§ Can test aspects of models predicting higher energy nuclear recoils
— Some couplings in effective field theories suppressed at lower recoil energies
— Inelastic WIMP scatters can result in higher energy signals

§ Room to improve sensitivity for higher mass WIMPs in canonical models
— Merit in searching for signatures of dark matter in less-explored ranges

Interaction rates for 
couplings predicted in 
effective field theory 

framework go to higher 
recoil energies

arXiv:2102.06998

Teal Pershing, LIDINE 2022



5
LLNL-PRES-839842

Characterizing light and charge yield of xenon 
recoils
§ Light and charge yield calibrations inform what S1/S2 sizes are expected from nuclear 

recoils at different energies

§ Additional higher energy calibrations (>100 keV) would help reduce uncertainties 
associated with event reconstruction

§ Also need these yields at different drift field strengths to study field dependence

Light yield Charge yield

Summary of current light/charge yield measurements in xenon
More data 
needed!

J. Balajthy, CPAD 2019
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The XeNu DT measurement at LLNL

§ Collimated monoenergetic (14.1 MeV) beam used to generate nuclear recoils
— Energy endpoint for neutron elastic scatters: 430 keV

§ Coincident pulse in a Backing Detector (BD) used to reconstruct scattering 
angle/energy
— Seven BDs used to tag scatters associated with different recoil energies

§ DT source operated at 4.7E7 neutrons/sec for a total of 40 hours
— Neutron recoils characterized at three different drift fields

Backing detectors

Xenon TPC
DT Neutrons

Teal Pershing, LIDINE 2022
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The XeNu Detector

§ Dual-phase TPC
— 150 g active xenon (5 cm diam., 2.5 cm. high)
— Top: Four 1” Hamamatsu R8520-406 PMTs
— Bottom: One 2” Hamamatsu R8778 PMT

§ High reflectivity PTFE lines active volume 
to increase S1 light yield
— Improves NR/ER discrimination, time-of-flight 

estimation, and precisely measuring the S1 light 
yield yield

§ Field in electron drift and extraction 
fields are independently tunable
— Data collected at three drift fields to 

characterize field dependence of yields
• 200 V/cm
• 760 V/cm
• 2000 V/cm

Multi-scatter event in XeNeu 
(60-Co calibration) 

S1

S2

S2
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Neutron elastic scatter event selection

§ Several preliminary cuts applied to select neutron elastic scatters
— Time of flight, LS pulse shape discrimination, Xenon TPC S1/S2 discrimination

§ Cuts aggressively remove majority of background gammas and accidentals, providing a 
pure sample of neutron elastic scatters

Gammas

DT neutrons

DT Neutrons (sum of all BD coincidences)
Inelastic Scatter 

neutrons75 keV recoils

Teal Pershing, LIDINE 2022
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Fits to S1/S2 distributions in data

§ Model to perform fits to data 
developed with GEANT4-based 
simulation of detectors, DT 
source, and shielding
— Detector effects and necessary 

corrections applied to simulated 
energy distribution to model 
photon/electron counts

§ Light/charge yield values 
providing the best fit to data 
estimated using MCMC-based 
Metropolis-Hastings algorithm
— Light/charge yield are assumed to 

locally be a Power law shape near 
the recoil energy peak

§ For higher energies, much lower 
statistics in peak than 
expected/predicted by Geant4
— Due to low statistics, field-

averaged values are estimated for 
the largest recoil energy datasets

Teal Pershing, LIDINE 2022

Best fits for 2000 V/cm drift field dataset
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Preliminary light/charge yield estimates

§ Measured charge and light yields shown in comparison to past measurements 
and predictions from NESTpy v2.3.6
— Higher values than NEST at <200 keV recoil energies, lower than NEST above 200 keV

§ Field dependence of data generally in agreement with predictions in NEST
— Inconclusive field dependence for light yield due to uncertainties on measurement
— Charge yield increases as the drift field strength increases

Teal Pershing, LIDINE 2022
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Conclusions

§ Nucleon recoil calibrations are needed for Xenon at energies >100 
keV to help improve sensitivity to larger energy scattering signatures 
in dark matter

§ A measurement of light/charge yields for nuclear recoils up to 426 
keV in energy has been completed
— Field-dependent yields measured up to 306 keV
— Field-averaged yields reported at 379 keV and 426 keV due to lower-than-

anticipated statistics

§ Light/charge yield measurements will be incorporated into NEST 
following final publication of results

Teal Pershing, LIDINE 2022
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Back-up slides
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Developing a model for experimental data

§ Full GEANT4-based simulation of 
detectors, DT source, and shielding

§ Preliminary cuts equivalent to those 
applied in data also applied in simulation
— Time-of-flight
— Neutron scatter in backing detector
— No gamma scatter in xenon TPC

§ Detector effects and corrections 
quantified with calibration data, then 
applied to simulation using MC 
techniques to convert to PE/e- counts
— Light collection efficiency
— Electron extraction efficiency
— S1 and S2 drift time dependence corrections

DT Neutrons

Simulation

Teal Pershing, LIDINE 2022
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Table of measured values in experiment

§ TOF systematic quantifies uncertainty due to (n,2n) contamination of primary DT 
neutron peak
— Re-evaluate fits using TOF windows on both sides of the primary DT neutron peak ([-2,0] ns and 

[0,+2] ns around TOF mean) 

§ LCE systematic quantified via uncertainty on g1 fit extracted from Doke plot

§ EEE systematic uncertainty evaluated for XeNu in previous measurement

Teal Pershing, LIDINE 2022
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Drift time correction applied to S1 data

§ Collection efficiency of S1 light for top/bottom PMTs is interaction depth-
dependent

§ Correction applied to top/bottom PMTs to correct S1 area relative to center of 
TPC

Teal Pershing, LIDINE 2022
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Light Collection Efficiency Measurement

§ Fit a 2D Gaussian to the endpoint of several 
calibration sources

§ Then, fit a line on the S1/energy vs. S2/energy 
space and extract light yield with a line fit

Cs-137

Teal Pershing, LIDINE 2022
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Collimator and shielding construction

§ DT source emits neutrons in all directions
— Neutrons hitting backing detectors will result 

in false xenon-BD coincidence signals
— Neutrons scattering off surrounding 

environment form backgrounds for neutrons 
directly from source

§ Stand designed for LLNL DT source
— Lead mounted around source/collimator to 

reduce mean energy of off-beam neutrons
— Borated polyethylene and water surrounding 

source to slow/stop gammas and neutrons

§ Entire stand surrounded with borated 
water for further neutron/gamma 
shielding
— 1” collimator formed using borated 

polyethylene Neutron collimator DT source cave

DT stand frame, constructed 
and partially shielded

DT stand frame, anchored

Teal Pershing, LIDINE 2022
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Neutron-Xenon elastic scattering spectrum

§ Expected xenon recoil energies as a function of scattering angle
— Energy endpoint at approximately 425 keV

Teal Pershing, LIDINE 2022
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Selecting neutron candidate events

§ Several handles for discriminating DT 
neutron events from backgrounds
— S1/S2 ratio in Xenon TPC
— Pulse discrimination in S1/S2 pulses
— Pulse discrimination in backing detectors
— Time-of-flight from Xenon TPC to backing 

detector

§ Clear neutron/gamma separation 
apparent with PSD in backing detectors

§ S1/S2 separation power with new 
reflector will be quantified prior to full 
data-taking run

Event energy (arb. Unit)
PS

D 
Pa

ra
m

et
er

Neutron/gamma discrimination in 
backing detectors (commissioning data)

Neutrons

Gammas

Teal Pershing, LIDINE 2022
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Uncertainties in lowest recoil energy

§ Lowest recoil energy’s Geant4-based model generally did not produce good fits to the 
detector data
— Detector was placed at a peak in the inelastic scattering cross-section as predicted by Geant4
— This corresponds to a trough in the elastic scattering cross-section, producing two-peak shape in simulation
— Highly variable cross-section region, and current prediction in ENDF is calculated (not informed by DT data) 

§ Light/charge yield reported in paper instead evaluated assuming a Gaussian shape, with 
light/charge yield calculated directly
— Difference in light/charge yield fits propagated as a systematic uncertainty in final results reported in table

Teal Pershing, LIDINE 2022

Simulated energy distribution, lowest 
angle LS coincidence scatters

S1/S2 distributions, 2000 V/cm data, lowest 
angle LS coincidence scatters

Excess in low-
energy scatters 
from passive 
materials

Dip in 
predicted ES 
cross-section 
results in two-
hump feature
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Excess in low-energy scatters in simulation

§ Larger counts in low-energy scatters 
observed in simulation but not in data

§ Excess appears associated with 
neutrons which undergo scatters in 
passive detector materials prior to 
scatter in xenon
— Majority of scatters occur on PTFE or field

rings

§ Several possibilities for excess in 
simulation relative to data
— Uncertainties in cross-section for DT 

neutrons on PTFE and copper in field ring

Teal Pershing, LIDINE 2022

Simulation


