

Application of noble gases in searches for neutrino-less double beta decay

Grzegorz Zuzel

Jagiellonian University, Kraków, Poland

Outline

- Double beta decay
- Xe properties
- Xe-based $0\nu\beta\beta$ experiments
- LAr in $0\nu\beta\beta$ searches
- Summary

Double Beta Decay

 $\beta\beta$ decay

In a number of even-even nuclei, β decay due to energy/angular momentum balance is forbidden, while double beta decay from a nucleus (A,Z) to (A, Z+2) is energetically allowed.

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Double Beta Decay Modes

 $\beta\beta$ decay

Xe properties

Xe based $0v\beta\beta$

experiments

LAr in $0v\beta\beta$

Summary

decay searches

(A,Z) → (A, Z+2) + 2e⁻ + 2 $\bar{\nu}_{e}$ $\Delta L = 0$ $T_{1/2} \sim 10^{18} - 10^{24} \text{ yr}$ $(A,Z) \rightarrow (A, Z+2) + 2e^{-1}$ $\Delta L = 2$ $T_{1/2}^{exp} > 2.3 \times 10^{26} \text{ yr}$

Double Beta Decay Modes

LIDINE 2022: LIght Detection In Noble Elements, 21-23.09.2022, Warsaw, Poland

Neutrinoless *ββ* **Decay**

 $\beta\beta$ decay

Xe properties

Xe based $0v\beta\beta$ experiments

LAr in 0vββ decay searches

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \cdot M \cdot T$$

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

- ϵ detection efficiency
- A isotope molar mass
- a isotope mass fraction
- M active mass
- T measurement time
- B background rate
- ΔE energy resolution
- $M \cdot T exposure$

Neutrinoless ββ **Decay**

 $\beta\beta$ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

$$\frac{1}{T_{1/2}} = G(Q,Z) \cdot |M_{nuc}|^2 \cdot \langle m_{ee} \rangle^2$$

$$\int_{\text{Effective neutrino}} \int_{\text{Effective neutrino}} \int_{\text{mass}} \int_{\text{Effective neutrino}} \int_{\text{Effective neutrino}} \int_{\text{Effective neutrino}} \int_{\text{mass}} \int_{\text{Effective neutrino}} \int_{\text{Effective$$

$$< m_{ee} > = |\sum_{j} m_j U_{ej}^2|$$

Background Issue

No background

 $\beta\beta$ decay

GERDA design

Bkg reduction

GD final result

LEGEND

Summary

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \cdot M \cdot T$$

Background

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$
$$\frac{1}{T_{1/2}} = G(Q, Z) \cdot |M_{nuc}|^2 \cdot \langle m_{ee} \rangle^2$$
$$\langle m_{ee} \rangle \sim \frac{1}{\sqrt{T_{1/2}}} \sim \sqrt[4]{\frac{B \cdot \Delta E}{M \cdot T}}$$
$$(M \cdot T)^{\uparrow} \times 100 \rightarrow T_{1/2}^{\uparrow} 10 \rightarrow \langle m_{ee} \rangle \downarrow \times \sim 3$$

0vββ Decay Expected Rate

 $T_{1/2} = \frac{\ln 2}{N_{\rm RR}} \frac{N_A}{A} M \cdot T$

 $\beta\beta$ decay

Xe properties

Xe based $0v\beta\beta$ experiments

LAr in 0vββ decay searches

Summary

Zero-background case back on an envelope

If one wants to measure $T_{1/2} \sim 10^{27}$ yr ($m_{ee} \sim 50$ meV) Then 1 event/y requires about 10^{27} source atoms It means about 1000 moles of isotope is needed implying mass of ~100 kg

And now one can only loose because of:

abundance, detection efficiency, background, energy resolution

Next Generation Experiments

LIDINE 2022: LIght Detection In Noble Elements, 21-23.09.2022, Warsaw, Poland

Next Gen. Experiment - requirements

$\beta\beta$ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

- Large detector masses → tones to reach 10²⁸ yr
 scalability / modularity
 - moderate costs
- High isotopic abundance \rightarrow enrichment
- High detection efficiency \rightarrow target = detector
- Ultra-low background \rightarrow bcg-free operation
 - Intrinsic (target) and external
 - Particle identification
 - Event topology
 - PSD
- Very good energy resolution \rightarrow discovery
- Stable operation over many years → proven technology

Ονββ Decay Isotopes

35 isotopes can undergo $0\nu\beta\beta$ decay only $\sim 1/3$ is experimentally relevant

		Isotope	$Q_{\beta\beta}$ [keV]	A [%]	$G_{0v} [10^{-15} y]$	$\mathbf{M_{0v}}$	Experiments
ßß decay		${}^{48}\text{Ca} \rightarrow {}^{48}\text{Ti}$	4271	0.19	24.8	0.7 - 3.0	CANDLESS
Xe properties		$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2039	7.8	2.36	2.2 - 6.2	Gerda, Majorana, Legend
Xe based 0vββ experiments		$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2995	9.2	10.2	2.2 - 5.6	CUPID-0
		$^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$	3350	2.8	20.6	2.8 - 6.6	ZICOS
LAr in 0vββ		100 Mo \rightarrow 100 Ru	3034	9.6	15.9	3.8 - 6.8	CUPID, AMORE, NEMO-III
decay searches		$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2013	11.8	4.8	4.0 - 6.6	ISOLDE
Summary		$^{116}Cd \rightarrow ^{116}Sn$	2802	7.5	16.7	3.0 - 5.6	Aurora
		124 Sn \rightarrow 124 Te	2228	5.6	9.0	2.0 - 5.8	TIN.TIN
JAGIELLONIAN UNIVERSITY IN KRAKÓW		$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2530	34.5	14.2	1.2 - 6.6	CUORE, SNO+
		136 Xe \rightarrow 136 Ba	2458	8.9	14.6	1.4 – 4.8	EXO, NEXT, PANDA, KamLAND-Zen
		$^{150}\text{Nd} \rightarrow ^{150}\text{Sm}$	3367	5.6	63.0	2.0 - 5.2	NEMO-III

Ονββ Decay Isotopes

35 isotopes can undergo $0\nu\beta\beta$ decay only $\sim 1/3$ is experimentally relevant

		Isotope	$Q_{\beta\beta}$ [keV]	A [%]	G _{0v} [10 ⁻¹⁵ y]	M_{0v}	Experiments
ßß decay		${}^{48}\text{Ca} \rightarrow {}^{48}\text{Ti}$	4271	0.19	24.8	0.7 - 3.0	CANDLESS
Xe properties		$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2039	7.8	2.36	2.2 - 6.2	Gerda, Majorana, Legend
Xe based 0vββ experiments		$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2995	9.2	10.2	2.2 - 5.6	CUPID-0
		$^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$	3350	2.8	20.6	2.8 - 6.6	ZICOS
LAr in 0vββ		100 Mo $\rightarrow ^{100}$ Ru	3034	9.6	15.9	3.8 – 6.8	CUPID, AMORE, NEMO-III
decay searches		$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2013	11.8	4.8	4.0 - 6.6	ISOLDE
Summary		$^{116}Cd \rightarrow ^{116}Sn$	2802	7.5	16.7	3.0 - 5.6	Aurora
		124 Sn \rightarrow 124 Te	2228	5.6	9.0	2.0 - 5.8	TIN.TIN
JAGIELLONIAN UNIVERSITY IN KRAKÓW		$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2530	34.5	14.2	1.2 – 6.6	CUORE, SNO+
		136 Xe \rightarrow 136 Ba	2458	8.9	14.6	1.4 - 4.8	EXO, NEXT, PANDA, KamLAND-Zen
		$^{150}\text{Nd} \rightarrow ^{150}\text{Sm}$	3367	5.6	63.0	2.0 - 5.2	NEMO-III

0vββ Decay Experiments

0vββ Decay Experiments

0vββ Decay Experiments

Advantages of Xe

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

- Scintillation: high light yield, transparent to own light
- Ionization: high yield, low electron affinity, signal amplification possible
- Relatively high G_{0v}
- Xe ca be used ,,directly" as gas or liquid, no further processing of the material needed
- Easy to handle/transport in pressure cylinders
- Scaling (up to several tones) possible (no radio-isotopes)
- Xe as a gas can be purified
- High-Z material, good self-shielding properties
- Ba tagging might become possible to further reduce backgrounds
- Relatively low cost of ^{enr}Xe
- FWHM good enough to handle $2\nu\beta\beta$ background (~1%)
 - LXe: degassing and Rn emanation strongly suppressed
- In GXe possible tracking

Disadvantages of Xe

- Light emitted at 178 nm
- Relatively low M_{0v}
- $Q_{\beta\beta}$ below 2.6 MeV ²⁰⁸Tl gamma line
- $Q_{\beta\beta} = 2458$ keV, close to a ²¹⁴Bi gamma line
- Xe is volatile risk of loss
- Modest global production compared to enrichment requirements
- Scaling possible but requires upgrade of cryogenic infrastructure
- Lots of material used for self-shielding
- Continuous purification with purity monitoring needed for long-term stable operation
- HHV required for TPC operation
- Relatively poor FWHM (compared e.g. to solid state detectors)
- PSD not applicable
- In GXe (room temperature) ²²²Rn emanation may dominate the background

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Purification of Xe

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

- Due to degassing of detector components and Rn emanation Xe must be continuously purified to maintain required electron lifetimes (some ms) and to keep the background low
- To remove electro-negative impurities hot getters are used (gas phase purification)
- The bigger the detector is the faster Xe must be circulated and purified
- Removal of Rn is not trivial:
 - -low-temperature adsorption methods are not effective,
 - application of more complicated distillation may be necessary. The turn-over time is defined by the ²²²Rn half-life (3.8 d). In case of several tons of LXe to be purified → application of several (smaller) distillation columns
 - identification of all major sources necessary screening
 - The size of the detector may be limited by the ability to purify Xe

²²²Rn in XENON1T

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

H. Simgen, LRT2019

EXO-200

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

EXO-200 final result:

- $-M L^{136}Xe = 175 kg$
- $-M \times T = 234.1 \text{ kg} \times \text{yr}$
- BI: $(1.8 \pm 0.2) \times 10^{-3} \text{ cts/(kg \times yr \times keV)}$
- $-T_{1/2} (0\nu\beta\beta) > 3.5 \times 10^{25} \text{ yr} (90\% \text{ C.L.})$

 $-m_{\beta\beta} \le (93 - 286) \text{ meV}$

KamLAND-Zen

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

KamLAND-Zen 800:

- Mini-balloon Radius = 1.90 m
- Xenon mass = 745±3 kg
- Data taking started Jan. 2019

KamLAND-Zen 800 latest result:

- $M L^{136} Xe = 745 kg$
- $-M \times T = 970 \text{ kg} \times \text{yr}$
- -BI: ~10⁻⁴ cts/(kg×yr×keV)
- $-T_{1/2} (0\nu\beta\beta) > 2.3 \times 10^{26} \text{ yr} (90\% \text{ C.L.})$
- $m_{\beta\beta} \le (36 156) \text{ meV}$

Background	Best-fit					
	Frequentist	Bayesian				
136 Xe $2\nu\beta\beta$	11.98	11.95				
Residual rac	lioactivity in Xe-LS					
²³⁸ U series	0.14	0.09				
²³² Th series	0.84	0.87				
External (R <mark>adioactivity</mark> in IB)						
²³⁸ U series	3.05	3.46				
²³² Th series	0.01	0.01				
Neutrino interactions						
$^8{\rm B}$ solar $\nu~e^-~{\rm ES}$	1.65	1.65				
Spallati <mark>on products</mark>						
Long-lived	12.52	11.80				
^{10}C	0.00	0.00				
$^{6}\mathrm{He}$	0.22	0.21				
¹³⁷ Xe	0.34	0.34				

Xe vs. Ge

ββ	decay
----	-------

Xe properties

Xe based $0v\beta\beta$ experiments

LAr in 0vββ decay searches

Parameter	EXO-200	KamLAND -Zen 800	NEXT- White	GERDA
M [kg]	175	745	4.3	44.2
M×T [kg×yr]	234.1	970	2.8	127.2
FWHM at Q _{ββ} [keV]	25	100	22	3
BI [cts/(kg×keV×yr)]	1.8×10 ⁻³	~10-4		5.2×10 ⁻⁴
Bcg-free operation [Y/N]	N (~20)	N (~30)	Ν	Y (<1)
$T_{1/2}^{0v} [10^{26} \text{ yr}]$	0.35	2.3		1.8

- Presently the best limit on $T_{1/2}^{0v}$ comes form Xe
- Good energy resolution and low background are key factors for discovery
- Costs: experiment specific

Argon

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

- Ar / LAr not used as a target in the $0v\beta\beta$ decay searches
- In GERDA LAr used as cooling medium for HP^{enr}Ge detectors and as a passive and active shield (main background reduction tool in Phase II)
 - \rightarrow high purity
 - \rightarrow relatively high density
 - \rightarrow High scintillation (ionization) yield
 - \rightarrow Scintillation at 128 nm (WLS needed)

GERDA LAr veto

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

16 3" PMTs Cylinder with WLS (TETRATEX foil)

810 wavelength shifting fibers coupled to 90 SiPMs

HOW AD KD KO

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

GERDA LAr veto performance

- Channel-wise (PMT/SiPM) anti-coincidence condition
- Thresholds at ~ 0.5 P.E.
- Acceptance determined from random triggers: (97.9 ± 0.1) %
- ⁴⁰K/⁴²K Compton continua completely suppressed
- γ -rays survival fractions: ⁴⁰K (EC) = ~100 %, ⁴²K (β ⁻) ~20 %
- Almost pure $2\nu\beta\beta$ spectrum after LAr veto cut (600 1300 keV)
- Background suppression in ROI $(2039 \pm 2\sigma)$: × 6

LEGEND-200 LAr veto

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

- Geometry optimized to minimize dead volumes
- LAr purified during cryostat filling ($\tau = 1.15 \ \mu s$) see G. Haranczyl talk

⁴²Ar problem

3440

3190

2750

2423

1836

1524

20Ca42

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

⁴²K

)+ 33

18Ar42

- Charged after creation
- $T_{1/2} = 12.36 \text{ h}$
- Q = 3525.4 keV
- Mostly a pure β emitter
- Most intense γ ray at 1525.7 keV (18 %)

12.4 h 0.07% 2.3-

(6)+

0.1%

17.6%

0.05%

19K42

β

 $Q_B = 3.52 \text{ MeV}$

81.9%

Background at $Q_{\beta\beta}$ by:

- β decay
- Bremsstrahlung from β
- 2424 keV γ ray

LEGEND background budget

LEGEND-1000 conceptual design

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

Summary

Summary

HOW CO XP

ββ decay

Xe properties

Xe based 0vββ experiments

LAr in 0vββ decay searches

- Neutrino-less double beta decay plays an important role in particle and astro-particle physics
- Several experimental efforts exploring different techniques are implemented
- Nex generation experiments needs to probe $T_{1/2}^{0v}$ at the level of $10^{27} - 10^{28}$ yr to explore IH
- Noble gases paly an important role in neutrinoless double beta decay searches
- Efforts to improve the detector parameters
- Presently the best limit for $T_{1/2}^{0v}$ comes form Xebased experiment
- Energy resolution and background are key parameters for discovery potential