

 $\stackrel{\frown}{\star}_{\star} \stackrel{\frown}{\star}$

DARWIN Xenoscope: a full-scale vertical demonstrator for the DARWIN observatory erc XENOSCOPE

University of Zurich

L. Baudis, A. Bismark, Y.Biondi, J. Cuenca García, P. Cimental, M. Galloway, F. Girard, R. Peres, D. Ramírez García, C. Wittweg

The future DARWIN observatory

- Proposed next generation dark matter detector
- Search for WIMPs with unprecedented sensitivity

Goal: Investigate the LXe purity as a function of the recirculation speed

Multi-tonne scale LXe TPCs require R&D test platforms

Full scale vertical demonstrator at UZH [2] Full scale horizontal demonstrator at Uni Freiburg

Goal: Test full-size detector subsystems under real conditions in LXe

- Drift length: 53 cm
- In-house made thin film Au photocathode
- Pulsed xenon flash lamp (Hamamatsu L7685)
- Charge readout on top (Q_A) and bottom (Q_A)

- Waveforms acquired by oscilloscope and ADC
- Charges are obtained from integrals of the current pulses
- Ratio of signals proportional to the e-lifetime τ_{ρ}

PM was successfully operated under stable conditions for more than 70 days

The Xenoscope R&D platform

Proof of principle: electron drift over 2.6 m LXe. To achieve this goal, the system requires:

- Excellent Xe purification system
- Efficient High-Voltage system
- Electric field uniformity

Main R&D projects:

- Custom-made HV distribution
- Electron cloud diffusion
- Light attenuation measurements
- Test of various light sensors

Towards the 2.6 m TPC

Phase 1: Purity Monitor

For the following phase the PM will be converted to a two-phase xenon TPC Three major upgrades will be implemented:

- **SiPM array:** The proportional scintillation light will be observed by 192 6×6 mm² SiPMs arranged in tiles of 16 units
- Liquid gas interface and level control: One long and three short 2. capacitive level meters will enable real-time monitoring of the liquid level in the TPC as well as a precise measurement and setting of the liquid-gas interface height

HV system:

Generation of the nominal voltage ($\sim 50 \text{ kV}$) Safe transmission from the power supply to the cathode Stable operation at the max. allowed voltage (100 kV) and under cryogenic temperature and pressure conditions

Cup & spring mechanism

Custom-made connection to the cathode

Vacuum-to-LXe Commercial ceramic FT welded on a

feedthrough DN125CF flange

Air-to vacuum Heinzinger HV cable cryofitted to a feedthrough custom DN40CF flange

Stay tuned for upcoming results!

References:

vards the ultimate dark matter detector, JCAP 11 (2016) 017. I collaboration, J. Aalbers et al., DARN [2] L. Baudis et al., Design and construction of Xenoscope – a full-scale vertical demonstrator for the DARWIN observatory, JINST 16 (2021) P08052.

[3] DARWIN Collaboration., Aalbers, J., Agostini, F. et al. Solar neutrino detection sensitivity in DARWIN via electron scattering. Eur. Phys. J. C 80, 1133 (2020). https://doi.org/10.1140/epjc/s10052-02

[4] Agostini, F., Maouloud, S.E.M.A., Althueser, L. et al. Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of ¹³⁶Xe. Eur. Phys. J. C 80, 808 (2020). https://doi.org/10.1140/epjc/s10052-020-8196-z