

The Scintillating Bubble Chamber

LAr-10: Overview and outlook

LIDINE 2022 - AstroCeNT

Austin de St Croix, PhD student on behalf of the SBC collaboration

Scintillating Bubble Chamber

SBC-LAr10: physics scale chamber

- 10kg Ar target, xenon-doping sub keV NR sensitivity (100 eV heat)
- gamma insensitivity
- fused silica jars (contains Argon) submerged in CF₄ (hydraulic fluid)

Readout

2

- scintillation: SiPMs
- bubble acoustics: piezos
- bubble imaging: LEDs and cameras

Inspiration from others:

bubble chamber design: **PICO 40L/500** scintillation system: **LoLX** (see D Gallacher's talk thursday) cryo-cooling: **LUX/LZ**

Why a Bubble Chamber?

Conventional noble experiments: scintillation & charge.

high energy \rightarrow discrimination is excellent

at low energy (∽keV NR) → discrimination gets harder

(ER & NR look similar)

ER/NR bands merging at lower energy. (top) xenon - LZ, from arXiv:2207.03764, (bottom) argon - DS50, from arXiv:1510.00702

Why a Bubble Chamber?

5

Conventional noble experiments: scintillation & charge.

high energy \rightarrow discrimination is excellent

at low energy (∽keV NR) → discrimination gets harder

(ER & NR look similar)

Why a Bubble Chamber?

6

Energy

SBC - LIDINE 2022 - Austin de St Croix

Bubble Chamber Basics Filling SBC (like normal chamber) liquid µ_I(P,T) | Pressure→ fill with argon at 1.5 bar, ∽90K slowly warm active region to 120-130K $\mu_l = \mu_v$ Superheated or 'bubble-ready' vapour µ_v(P,T) chamber compressed (stable) 1. 2. expand chamber (to superheated liquid) Temperature→ metastable state, energy barrier prevents diagrams from K. Clark boiling! Fixed P, T Gibbs potential→ μ

Density→

Bubble Chamber Basics

Filling SBC (like normal chamber)

9

- fill with argon at 1.5 bar, ∽90K
- slowly warm active region to 120-130K

Superheated or 'bubble-ready'

- 1. chamber compressed (stable)
- 2. expand chamber (to superheated liquid)
 - metastable state, energy barrier prevents boiling!
- 3. particle deposits enough heat in small volume
 - nucleation/bubble formation!

image from PICO chamber, c. Ken Clark - https://indi.to/pXh9y

Bubble Chamber Basics

Filling SBC (like normal chamber)

10

- fill with argon at 1.5 bar, ∽90K
- slowly warm active region to 120-130K

Superheated or 'bubble-ready'

- 1. chamber compressed (stable)
- 2. expand chamber (to superheated liquid)
 - metastable state, energy barrier prevents boiling!
- 3. particle deposits enough heat in small volume
 - nucleation/bubble formation!

useful threshold model: *Seitz hot spike* tune Seitz threshold via **Pressure, Temperature** Seitz heat threshold relates to NR threshold (Daniel Durnford's LIDINE talk on NR thresholds)

image from PICO chamber, c. Ken Clark - https://indi.to/pXh9y

Bubble Chamber Discrimination (why use argon)

Successful DM searches with molecular fluid BCs ...

- COUPP, PICASSO, PICO (40 active, 500 in future) CF₃I C₄F₁₀ C₃F₈
- Gammas nucleate bubbles at few keV threshold...
 - delta rays

11

Auger cascades (if possible)
 Iodine or Xe contamination (arXiv:2110.13984)

¹² Bubble Chamber Discrimination (why use argon)

Successful DM searches with molecular fluid BCs ...

- COUPP, PICASSO, PICO (40 active, 500 in future)
 CF₃I C₄F₁₀ C₃F₈
- Gammas nucleate bubbles at few keV threshold...
 - delta rays
 - Auger cascades (if possible)
 Iodine or Xe contamination (arXiv:2110.13984)

No evidence of ER induced nucleation in atomic fluids (Ar, Xe chambers operated in 50s, 60s, 80s, present)

• no molecular structure/degrees of freedom: inefficient transfer of electronic energy to heat

SBC operation = 100 eV heat (Seitz) threshold!

A bubble event (in 30g LXe chamber)

13

A bubble event (in 30g LXe chamber)

area (au)]

log₁₀[PMT

14

SBC-LAr10 Status

Construction complete (separately)! Fermilab

- must test BC slow control and DAQ
 - hydraulic piston works!
- pressure vessel and cryosystems

SBC-LAr10 Status

Construction complete (separately)! Queen's

- scintillation DAQ testing soon
- cool inner vessel, test seal on jars

J Corbett, Ben Broerman, Hector HH, more (Queens)

thermal coupling for cooling IV alone, to test seals on quartz (Queen's)

Scintillation System

Silicon Photo-Multiplier (SiPM) for light detection

- 32 SiPMs facing LAr, 8-16 facing LCF₄ (Veto)
- high speed analog electronics (LoLX)
 coupled to 16 ns digitizer (62.5 MHz)
- 10-1000 ppm Xe doping

(at 128 nm jars absorb, lower SiPM PDE)

arXiv:1511.07723

Signa

(e)

Fermilab Chamber Hamamatsu VUV4 devices

quadrants summed in-situ via PCB

SNOLAB/DM Chamber

switch to FBK-LF devices (less radioactive) wirebond to custom PCB (TRIUMF)

SBC-LAr10 Plan

Future plan

- 1. combine systems at Fermilab
 - a. fresh jars acid leached at SNOLAB
 - b. commissioning & calibration (2023-2025)
- 2. build second DM chamber
 - a. more stringent materials selection
 - b. operate at SNOLAB (2024)
- 3. install Fermilab chamber at nuclear reactor
 - a. study reactor CEvNS (in Mexico?)

UG site at Fermilab (MINOS)

Physics Reach - Discrimination and Veto

21

and much more happening!

SBC - LIDINE 2022 - Austin de St Croix

NU setup to characterize LCF₄ scintillation (c. Zhiheng Sheng)

Bright future ahead

- Detector systems built and being tested!
- Calibration to begin in 2023 (Fermilab)
- exciting physics programs on horizon!

SBC white paper: arXiv:2207.12400v1

Open detector questions:

- (when) do ERs start nucleating?
 - Electric field, xenon doping...
- pressure trigger (keep LEDs off before bubble)
- scintillation veto threshold?
- accuracy of background model, etc...

SBC Collaboration

K. Clark, A. de St Croix, H. Hawley-Herrera, J. Corbett, B. Broerman, K. Dering, K. Foy

> UNIVERSITY OF ALBERTA

M.-C. Piro, M. Baker, D. Durnford

M. Laurin

P. Giampa, J. Hall

C.M. Jackson

S. Westerdale

Northwestern University

C.E. Dahl, X. Liu, Z. Sheng, W. Zha

R. Neilson, M. Bressler, N. Lamb

Universidad Nacional Autónoma de México

E. Vázquez-Jàuregu, E. Alfonso-Pita

W INDIANA UNIVERSITY

SOUTH BEND E. Behnke

UC SANTA BARBARA

W.H. Lippincott, R. Zhang

M. Crisler

Backup slides

Physics Reach - DM Search

29

Backgrounds and CF_a

Bkgs within 'Physics signal' region:

30

- single bubble far from walls
- non-distinguishable acoustics
- below scintillation veto threshold

CF₄

SBC - LIDINE 2022 - Austin de St Croix

¹⁹F(alpha, n)²²Na cross-section is large!

but liquid CF₄ scintillates! (~10 PE/keV - gamma) (<5 PE/keV - alpha)

Liquid CF₄ veto:

- Instrument CF₄ space w/ SiPMs
- tag neutron producing events!

NU setup to characterize LCF₄ scintillation (c. Zhiheng Sheng)

- single site neutrons (various sources)
 neutrons from CF₄
- solar CEvNS (irreducible)
- wall nucleation...

Uncommon background - Gamma induced NR

Bkgs within 'Physics signal' region:

31

- single bubble far from walls
- non-distinguishable acoustics
- below scintillation veto threshold

Photo-Nuclear elastic scattering

- Delbrück, Thomson scattering
- a gamma induced NR!
- ~10⁻⁶ probability (1-3 MeV gamma)

current simulation: ~1 event per year (shielding dependent)

Heat vs NR recoil - first order

Has been said "scintillation guenches nucleation" in reality - scintillation removes energy charge as well (e in bandgap, ion in liquid)

$$E_{heat} = K - N_{PE} \times E_{photon} - N_{e} \times (E_{gap} + E_{ion})$$

Assumptions in toy model calculation

- NR range < Seitz critical radius
- electron thermalization < Seitz critical radius
- ignore other processes
- NEST yields to calculate non-heat energy

full calibration campaign to characterize response (calculations are for guidance)

NR: Energy converted to Heat via NEST Yields

Note on signal production

Recombination is different between Ar/Xe

- faster/easier in Ar
- produces additional local heat (via dissociation)
- test ER nucleation with few 100V/cm field

Xe doping: 178 nm removes 2.7 eV less energy compared to 128 nm

• does ER induced nucleation depend on doping?

from arXiv:1702.03612v1