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Introduction

® Total energy deposited in the
detector is divided into::
@ Direct Excitation.

Dual Phase TPC'’s
@® lonization.
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Image from: https://science.purdue.edu/xenonlt
J. Phys. G: Nucl. Part. Phys. 44 (2017) 055001
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Dark Matter (DM) and CEvNS detections
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Massive detectors— larger
signals — lower limits.

Systematic fluctuations for S;
and Sy signals will limit this
tendency.

Especially for large nT TPC's.

Hence the importance of having

a first principles theory for
energy reconstruction.

Y. Sarkis  (ICN-UNAM) Lindhard integral eq. apply to Ly and Qy_



Energy Dissipation in Noble Elements

Energy Eg is deposited in the medium: Egr = H + N
Distributed between moving ions, N, and electrons H.
Platzman equation states?: H = N;Ej + NexEoyx + N;E.

® N;: number of electron-ion pairs, A+ A —s e+ AT + A’
® Nex: number of atoms excited, A+ A — A* + A’
® E: average kinetic energy of sub-excitation electrons — Heat.

The energy E will be taken into account later in the binding energy.

Visible electrons and photons x 7, ionization energy.

2R. L. Platzman, Appl. Rad. Isot. 10, 116— 122 (1961)
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Relation with ionization efficiency f,

® We define the ionization Efficiency: Eﬂ =fal

R
® The total quanta is: N = N; + N = N;(1 + IXle, ),
® where /lex = [ will be a constant, N = N;(1+ ).

o W, = % is the energy to create a e-h pair.

Then the average energy to create an electron or exciton? is
Wee = VV,/(l + ﬁ)

e Finally 7 = WiN; = f,Eg = Wac(Nj + Nex) = Wic (& + i)_

82 81
ER—VVSC (gg —gi)/ln

3For zero electric field all quanta goes to scintillation, N = N.
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lonization Efficiency

To start the cascade of recoiling atoms the
particle,e.g WIMP, have to deposit the necessary
energy to free the ion.

N : Nuclear collisions*. ()

H : lonization (visible) energy [keVee] (7).

ST IR o LIGG W
® O O ®

Recent Results from LUX and

N total ionization energy f . E Prospects for DM Searches with LZ
total deposited energy ~— | 7 T £R i

® cgr =1+ i/, where e is the recoil energy.
® Energy u is lost to some disruption of the atomic bonding: g = ¢ + u.

® This sets a dissipative cascade of slowing-down processes.

*Using dimensionless units (¢ = 11.5E(keV)/Z7/3 )

Y. Sarkis  (ICN-UNAM) Lindhard integral eq. apply to Ly and Qy_



Lindhard’s Integral Equation Approximations

(Th : Nuclear kinetic energy and T,; electron kinetic energy.)

/dan,e 17<E—Tn—ZTe;>+z7(Tn—U)—D(E)—i—ZDE(Tei—Uei) =0 (1)
F —_——— F
A D

total cross section

Lindhard’s (five) approximations

@ Neglect contribution to atomic motion
coming from electrons.

(@ Neglect the binding energy, U = 0.

@ Energy transferred to electrons is small

V (E-T,-XT.)
compared to that transferred to ions. /
. . V. (Tu=Up)
@Y Effects of electronic and atomic \"m .
collisions can be treated separately. V& After 2 .
. Before = — = C—
® T, is small compared to the energy E. o ( ) \@ﬂ‘ electrons
V(- U)
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Lindhard Simplified Equation

Lindhard deduced a simplified integro—differential equation,

(k€1/2 _I(E) / dt 2:3/2) [V(E— t/g)—l—l_/(t/f) —17(5)]7 (2)
Se do,
LH.S RH.S

but since binding energy was neglected it is only valid at high energies, since
v(e — 0) — &, by the above equation we get 7'(0) = 0!.

.Lgo.s» Moliere-AVG potential
. . . 0.6
® Lindhard found a good parametrization for ’

. 04k
the solution. t
0.2

® Valid at high energies (U=0). t

0

o 7 (F) — € _ 2,015 0.6 g
71(e) e g(e) =3" 4+ 0.7 + . RS LAS]
oaf =—|RHS+LHS|

® For low energies and a realistic potential !
. . . 10° 104 10‘ 1 10 10?
Lindhard formula is not an accurate solution.

Eov
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Integro-Differential Equation With Binding Energy

® To include the binding energy, we recover the term B in Eq.(1):
o(T,) — o(T, — U).

® |t's also important to expand the term A in Eq.(1) up to second order.
D(E—T,—%Te) = (E—T,) —V(E)(ZiTe) + 7'(E)Tp (X Tei) - 3)

This leads to the appearance of the electronic stopping power in the first
derivative term

/ d0me? (E) (5 Tar) = 7 (E)Sel(E), / doe(5iTa) = So(E). (4)
For the second derivative term, we can apply the integral mean value theorem

[ doned E)To (5:T) =< To > P(E)S.(E) = GEV(E)S.(E). (9)
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Simplified equation with binding energy

e Other works ® didn't notice the necessity to change the lower limit of
integration in order to be consistent with the term o(t/e — u).

® |n our work, we take this into account, so Eq.1 becomes:

—%k63/217”(5) —|—k€1/2 /
Se

t3/2 [ (e—t/e)+u(t/e—[u]) —p(e)]

On

1 fea

(6)
® This equation can be solved numerically from € > u
® The equation predicts a threshold energy at, gtireshold — 2,
® As a first approach, we assume a constant binding energy u = ug.

® For more details, Y. Sarkis et al, Phys.Rev.D 101,102001 (2020) .

5Phys. Rev. D91, 0835098 (2015)
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(NR)s ionization efficiency for
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Best Fit by using Eq.(6) for k and u (10 x 10 Grid) to data.
Charge exchange effects like Bohr stripping, will damp f, at high
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Recombination Model for Charge and Light Yields.
Results J
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Thomas Imel Box Model

Diffusion equation for ions-electrons recombination model®.

T M BN ()

Each excited or ionized atom leads to one photon or electron.
® = Ni+ Nex = ny + ne, ”ez(l—r)Ni& ny = Nex + rN;.

® Hence, the fraction of ionizations predicted is
Ne 1 1 N«
— =>1In(1 1—-r==In(1 = .
W=, 1or=gn(rg. €=

N; = %, Where 3 and v =

ol
222y are free parameters.

SAnn.Phys.IV, V42, pp.303-344, (1913). PRA 36, 614 (1987)
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Xenon Charge Yield
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Figure: Charge Yield for Xe; Nex/N; = 0.315 and 8 = 0.0127
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Xenon Light Yield
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Figure: Light Yield for Xe; Ny /N; = 0.701 and 5 = 0.0127
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Argon Charge Yield
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Figure: Charge Yield for Xe; Ne/N; = 0.404 and § = 0.025



Argon Light Yield
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Figure: Light Yield for Xe; Nex:/N; = 1.168 and 5 = 0.025
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Conclusions

@ We present a first principles study based on Lindhard integral
equation for nuclear recoil ionization efficiency f,,, in LXe and LAr.

® We show the implicit dependence of charge and light yield on f,.

©® The model predicts the turnover of f, at low energies, already
observed in Xe for Egr < 1 keV.

O A similar behavior is expected for Ar. Lindhard’'s model fails to
predict this effect.

@ At higher energies the model for f, can be improved by considering
Bohr stripping effects for electronic stopping power.

® Lindhard integral equation with binding energy is a promising
first-principles approach to study signal production in noble elements.
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