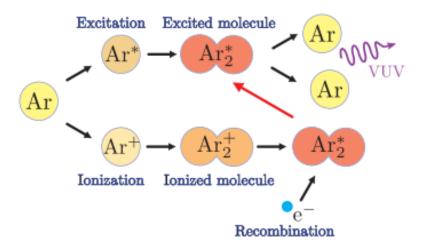


Sarthak Choudhary, Manish Gupta, Łukasz Pawela, Marcin Kuźniak, Tina Pollmann, Jan Ruhland, Piotr Gawron

On behalf of DEAP-3600 Collaboration

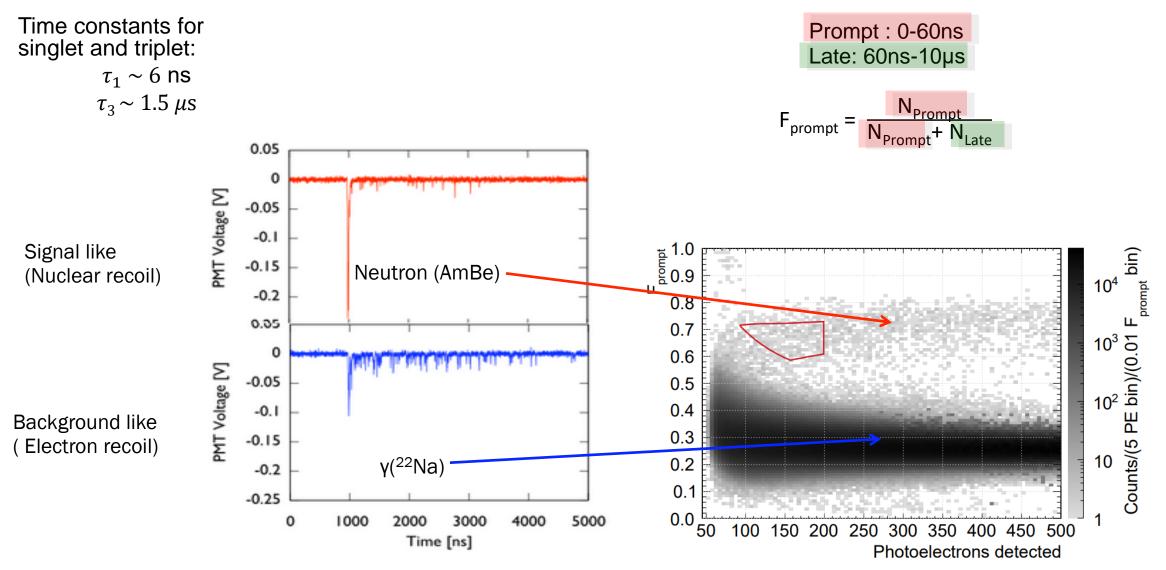
P Foundation for Polish Science

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480


Outline

- I. Introduction
- II. Toy Monte Carlo Model

III. PyTorch implementation


Argon Scintillation

- Particle colliding with Argon can lead to creation of excited dimers (excimers) of Argon via different mechanisms.
- Since singlet/triplet ratio depends on the charge density of the incident particle, it can be used to identify the incident particle.
- β^{-} particles released in decay of ³⁹Ar are main source of background in the energy range of interest.

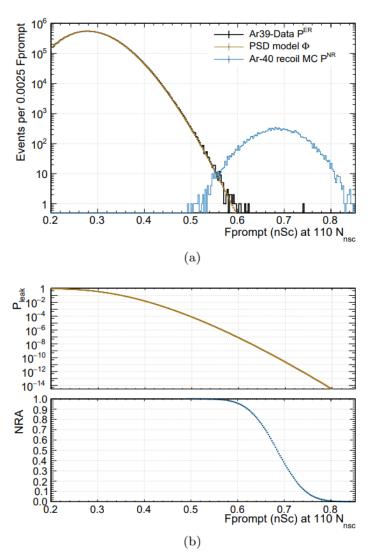
The two mechanisms leading to the emission of 128 nm photon. Ref: Amsler et. al., JINST 3:P02001,2008

Pulse Shape Discrimination (PSD) Parameter

PMT signal for different sources. Ref: Phys. Rev. D 100, 022004 (2019)

PSD in **DEAP-3600**

- For WIMP search using PSD, we have to estimate the number of background events in the WIMP search region. Any events above expected number of background events would be a potential WIMP event. This necessitates a very good model for PSD.
- In a study¹, fit to DEAP-3600 science data were carried out with an effective PSD model.

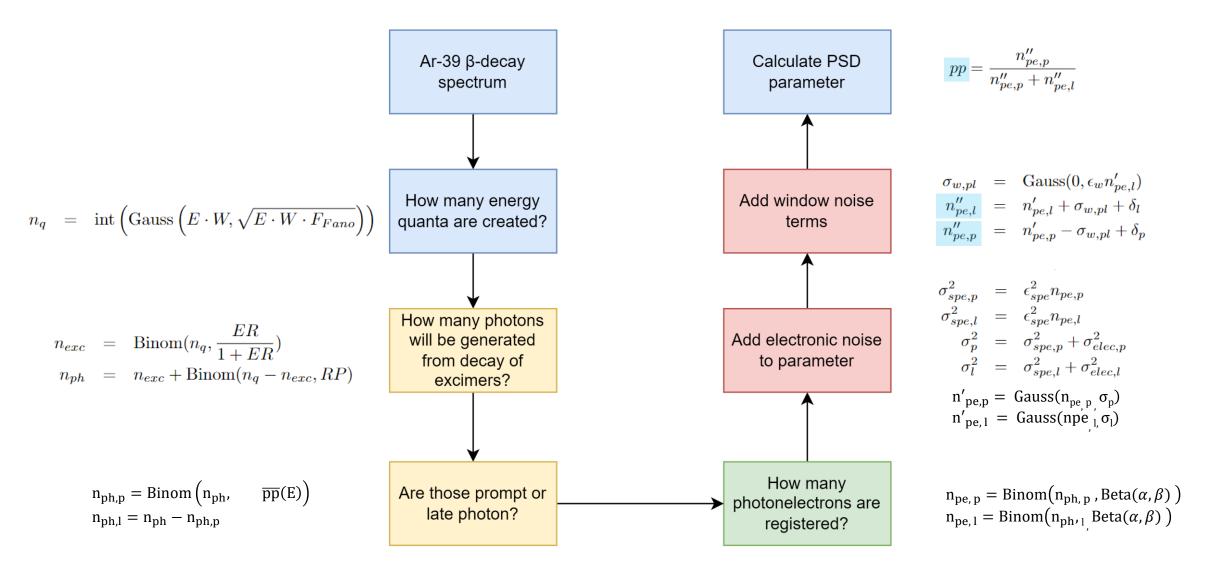

$$\Phi(x) = I \cdot \Gamma(x; \mu, b) * \text{Gauss}(x; \mu = 0, \sigma)$$

$$b(N_{\text{nsc}}) = a_0 + \frac{a_1}{N_{\text{nsc}}} + \frac{a_2}{N_{\text{nsc}}^2}$$

$$\sigma(N_{\text{nsc}}) = a_3 + \frac{a_4}{N_{\text{nsc}}} + \frac{a_5}{N_{\text{nsc}}^2}$$

$$\mu(N_{\text{nsc}}) = a_6 + \frac{a_7}{N_{\text{nsc}}} + \frac{a_8}{N_{\text{nsc}}^2} + \frac{a_9}{N_{\text{nsc}}^3}$$

1 Ref: Eur. Phys. J. C (2021) 81: 823

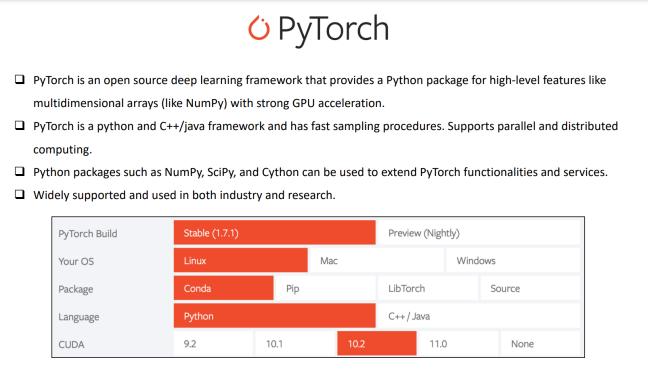


(a) The F_{nsc} prompt distributions at 110 N_{nsc} are shown for ³⁹Ar β events (background), together with the model fit (b) The background leakage probability (based on the fit model to 39Ar data) and signal acceptance (based on signal MC) as a function of the PSD parameter is shown. Ref: Eur. Phys. J. C (2021) **81**: 823

PSD model limitations

- In effective PSD model.
 - Parameters are given by the best fit to the detector data. The model parameters have no physical meaning and hence can not be used for reliable extrapolation.
- Therefore, we need a **physical** PSD model, such as the one developed for DEAP-1 [Astroparticle Physics 85 (2016) 1-23].
 - A simplified **analytic** model was developed which couldn't include all the scintillation physics.
 - The toy **Monte Carlo** model overcomes that but the ROOT implementation proved too slow for fitting data.
- To overcome this, fast toy MC has now been implemented in python using **PyTorch**.

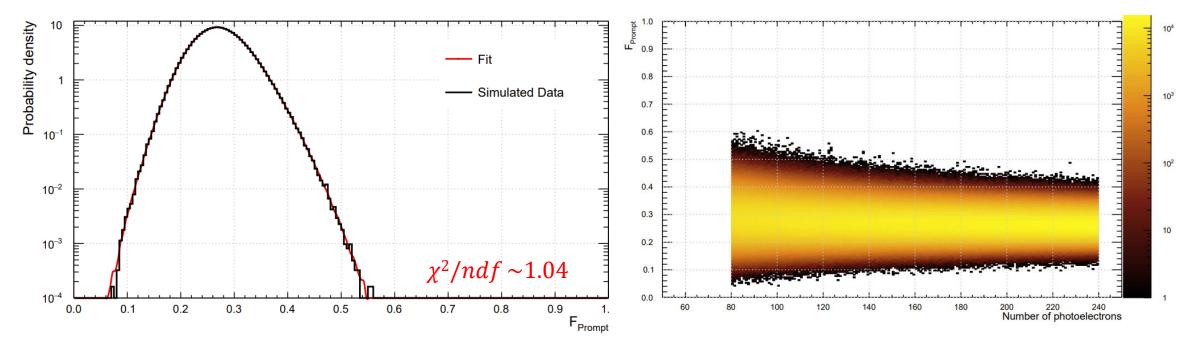
toy MC model


Color coding

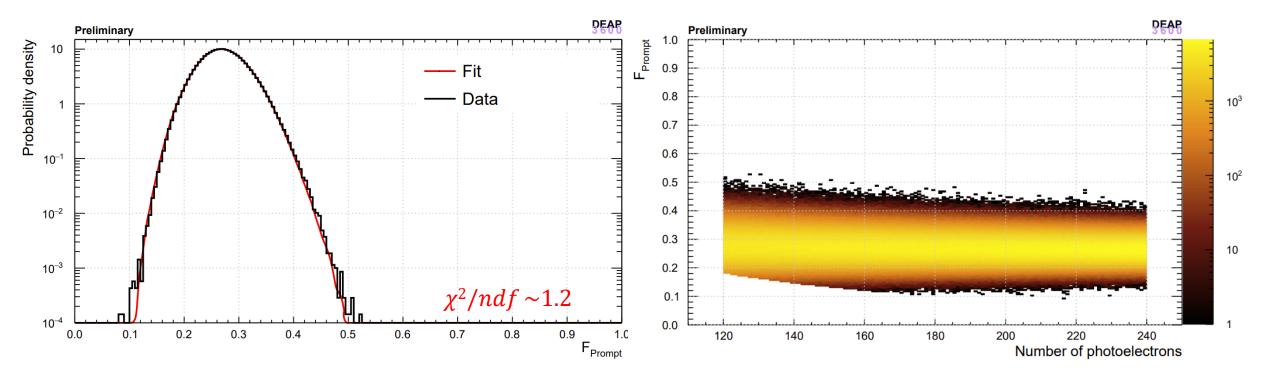
Binomial

BetaBinomial

PyTorch implementation


- The MC model is implemented in python and heavily relies on PyTorch.
- PyTorch, developed by Meta AI, powers a variety of softwares, e.g., Tesla Autopilot, Uber pyro etc.

 With PyTorch's inbuilt binomial generator and tensor operations, processing speed are increased by, at least, two orders on a single GPU for 10⁸ samples.


Validation

- PyTorch code can perform 2 dimensional multiparameter fit.
- The plots below show fit to simulated data generated with the MC model itself with $\chi^2/ndf \sim 1.04$
- 3 x 10⁶ events in fake data (~ 1 day of detector data)
- fitting time on a single GPU~ 12 minutes
- Fitter found to be consistent.

Fit to DEAP-3600 data

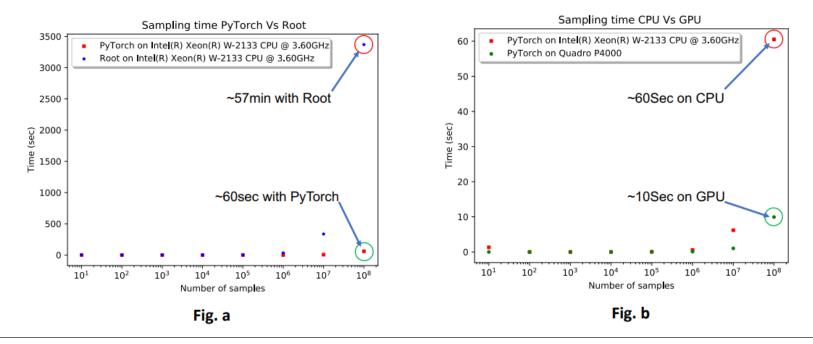
- Fits to Science data in range 120 to 240 photoelectrons are shown in the plots below.
- Currently, tuning noise model to data.
- $\chi^2/ndf \sim 1.2$

Summary

- A general overview of Pulse Shape Discrimination in Argon dark matter detectors is presented.
- A physics based PSD model is presented.
- We have implemented the toy MC PSD model using PyTorch for faster processing.
- Model details, such as, noise terms can be updated with relative ease.
- First fits to DEAP-3600 data seem promising.

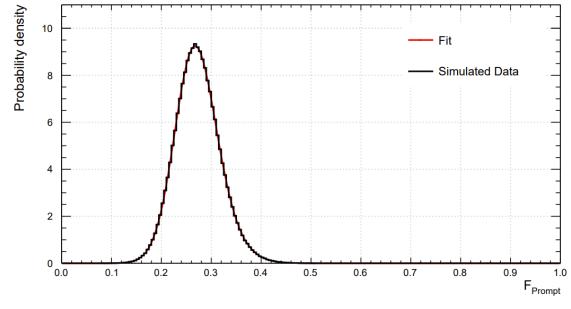
Future Plan

- distributed computing on a farm of GPU's.
- Apply the **background model** for DEAP-3600 data.


Thank You

Performance boost with PyTorch

PSD MC Sampling Time


Key Points:

- ✓ PyTorch based PSD MC is ~60 times faster than root based sampling on CPU for 10^8 samples.
- ✓ Pytorch based PSD MC is ~6 times faster on GPU than on CPU for 10^8 samples.
- ✓ Pytorch based PSD MC is ~360 times faster than root based implementation on GPU for 10^8 Samples

Fitter

- Cost function: negative log likelihood
- tMinuit called via pyROOT
- Simplex minimization algorithm

Validation: Agreement between input and best fit

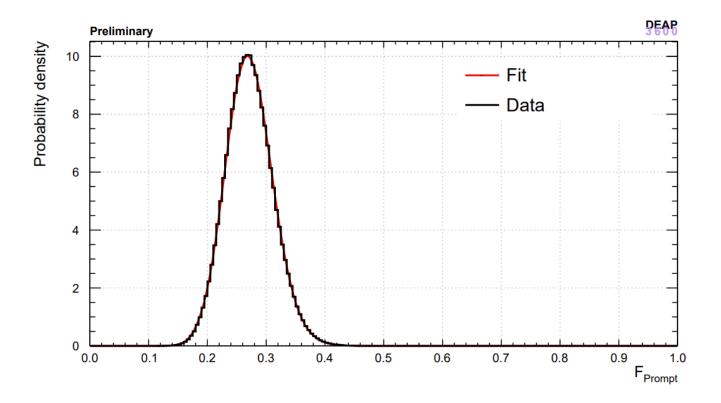
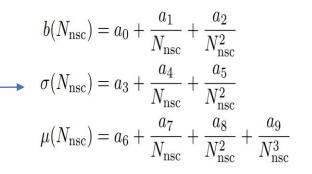
Parameter	Input Value	Best fit value	Hesse approx. error	
epsspec	0.673876	0.674953	4.11982e-04	
epsw	0	2.90833e-03	1.22308e-03	
selecprompt	0	Fixed		
seleclate	0.8	0.801280	7.92436e-01	
b	335	335.000	3.24245e+01	
pe_scale	0.95	Fixed		
deltal	1.3	Fixed		
deltap	0	Fixed		
p2	0.0771841	0.0771841	1.23894e-05	
kq	8.12647e-08	8.12647e-08	7.77881e-11	
tau3	1989.32	1989.32	3.63609e-01	

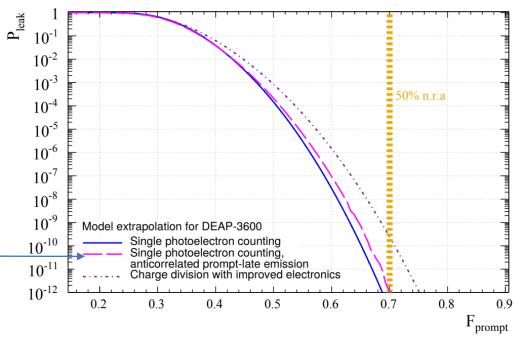
Correlation Matrix

PARAMETER	CORRELA	TION COE	FFICIE	ITS				
NO.	GLOBAL	1	2	4	5	9	10	11
1	0.52463	1.000	-0.520	-0.524	0.523	-0.121	0.480	-0.492
2	0.99566	-0.520	1.000	0.993	-0.996	0.235	-0.912	0.938
4	0.99833	-0.524	0.993	1.000	-0.998	0.235	-0.914	0.941
5	0.99890	0.523	-0.996	-0.998	1.000	-0.236	0.916	-0.942
9	0.24719	-0.121	0.235	0.235	-0.236	1.000	-0.235	0.204
10	0.91664	0.480	-0.912	-0.914	0.916	-0.235	1.000	-0.869
11	0.94217	-0.492	0.938	0.941	-0.942	0.204	-0.869	1.000

Fit to DEAP-3600 data

Fits to Science data are shown in the plots below:


Fig: Model fit to DEAP-3600 detector data (linear Y-axis).

PSD models and limitations

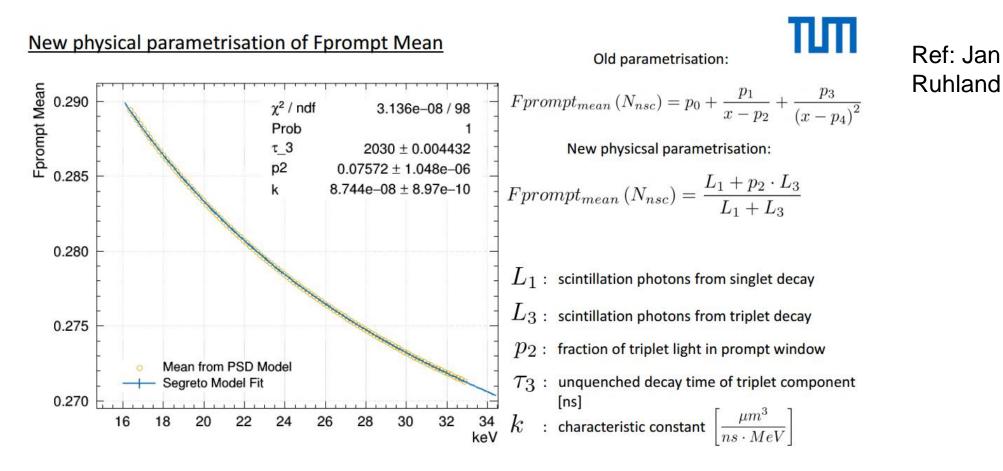
- For WIMP search using PSD, we have to estimate the number of background events in the WIMP search region. Any events above expected number of background events would be a potential WIMP event. This necessitates a very good model for PSD.
- In a study, fit to DEAP-3600 science data were carried out with an effective PSD model¹.
 - Parameters are given by the best fit to the detector data. The model parameters have no physical meaning and hence can not be used for reliable extrapolation.
- Therefore, we need a physical PSD model.
 - A simplified analytic model was developed which couldn't include all the detection physics.
 - The **Monte Carlo** model overcomes that but the ROOT implementation proved too slow for fitting data.

 $\Phi(x) = I \cdot \Gamma(x; \mu, b) * \text{Gauss}(x; \mu = 0, \sigma)$

The dashed line was generated with a toy simulation following the logic of the analytic model. Ref: Astroparticle Physics 85 (2016) 1-23

1 Ref: Eur. Phys. J. C (2021) 81: 823

Updated Analytic model


Physics model for mean Fprompt vs. energy [E. Segreto, Phys. Rev. D 103, 043001 (2021)]. Reduces the

number of free parameters compared to the effective model.

٠

٠

Corrected variance model, to allow for a quadratic noise term

Terminology

- W, scintillation and ionization Yield
- Excitation Ratio, ER = E/I
- Probability(E) = ER/(1+ER)
- Recombination Probability, RP
- $\alpha = n_{ph} * b * detection_probability$
- $\beta = n_{ph} * b * (1 detection_probability)$