

Energy resolution of the LZ detector for **High-Energy Electronic Recoils**

LIDINE 2022 conference

September 23, 2022

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Guilherme Pereira | LIP Coimbra on behalf of the LUX-ZEPLIN collaboration

• 1.5 m diameter by 1.5 m height

Liquid Xenon TPC:

- Active Mass: 7 t
 - 623 kg of ¹³⁶Xe

LZ Overview

- 741 kg of ¹³⁴Xe
- Fiducial: 5.6 t
- 494×3" PMTs

3 components veto detector:

- Water Tank + Gadolinium-loaded scintillator
- Liquid Xe skin

LZ Scientific program

1. WIMP search

- Better energy resolution
 - Better identification of the background sources
 - Better estimate for the background in the WIMP search region
- 2. <u>Neutrino physics searches</u>

$$O = 2v2β - Q_{ββ} = 826 \text{ keV} (^{134}\text{Xe})$$

 $O = 0v2β - Q_{ββ} = 2458 \text{ keV} (^{136}\text{Xe})$

If a neutrinoless $(0v\beta\beta)$ decay mode is measured then neutrinos are Majorana particles:

- Not yet observed;
- The two electrons carry the total energy of the decay, Q_{BB} ;
- Look for the 0v $\beta\beta$ decay by searching for an excess rate of events at $Q_{\beta\beta}$;

XY position reconstruction

Mercury algorithm

Statistical method using LRFs (per PMT Light Response Functions)

New method for S2 Light Collection Correction

 $C_{lc}(x,y) = rac{\sum_{i} \lambda_{i}(0,0)}{\sum_{i} \lambda_{i}(x,y)}$ $\lambda_{i}(x,y) = Light Response Functions per PMT$

Valid for any subset of PMT This work: S2 from the bottom array for energy reconstruction

S2 & S1 spatial corrections Generated from Rn-222 alphas Two easily identifiable a lines: 5.49 MeV (²²²Rn -> ²¹⁸Po) 6.00 MeV (²¹⁸Po -> ²¹⁴Pb)

Uniform in the volume and with high S1 and S2 yield

Corrections consist in a linear combination of 2D and 3D Uniform cubic B-splines

(phe)

NEVES, F., et al. Calibration of photomultiplier arrays. *Astroparticle Physics*, 2010, 33.1: 13-18.

S2 Corrections - Light Collection

- C_{Ic} Light collection efficiency
- C_v S2 yield (electron extraction and electroluminescence efficiency)
- Calculated as a ratio of sums of S2 LRFs in the following way

$$C(x,y) = rac{\sum_i \lambda_i(0,0)}{\sum_i \lambda_i(x,y)}$$
 .

The subsets can be also made dynamic, varying from event to event. Eg: dynamically exclude disabled PMTs

Position reconstruction results

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULO

- Events uniform inside the TPC
- Two hotspots on the left activity from two resistors located at the bottom of the detector

 Scatter plots with the color representing the interpolation of the respective 2D histogram bins – per event density

Z Doke plot - measure g1 and g2

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULA PORTUNAS de ROMONIAS

- S2 bottom only
- Density cuts (clean clusters) + Gaussian Mixture Model (initial guess) + 2D Gaussian Fitting (final

Doke plot - measure g1 and g2

$$E = W\left(\frac{S1}{g_1} + \frac{S2}{g_2}\right)$$

Valid only for Electronic Recoils $W=0.0135\;keV$ $T=174.1\;K;P=1.791\;bara_{(Xenon\;working\;conditions)}$

- Error bars calculated from the covariance matrix of the fit algorithm (sklearn curve_fit)
- Systematic calculated by splitting the doke in low and high energies.

Xe-127 EC+X-ray multi step processes cause a slight disagreement in the Doke fit

 to further explore through analysis of multi-scatter events

Energy spectrum

Energy spatial dependency

Demonstration of the detector spatial stability

 Small deviation towards the bottom (high drift time) of the detector probably due to overestimation of S2 tail and a non-uniform mixing of liquid Xe.

Energy spectrum in 100–700 keV range

\mathbf{Z} Energy spectrum in 1–2.8 MeV range

 Reconstructed energy linearity within 1% w.r.t. true energy

Energy Resolution

To our best knowledge, we obtain an unprecedented energy resolution for LXe at high energies.

0.67 ± 0.01 % for TI-208 (2.614 MeV)

Projection line calculated from fit on experimental data

 $\sigma = K\sqrt{E} \ K = 0.320 \pm 0.001$

Energy Resolution vs depth

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCUL particulas e iconologia

• Study of effects leading to depth-dependent variations of the resolution is still in progress

18

Comparing with NEST

- Parameters used in NEST simulation (v2.3.5):
 - o g1: 0.1057 phd/ph
 - E field gas = 8.1956 kV/cm
- NEST γF model assumes a Fano factor (FF) of 1:
 - Initial fluctuations of the S1 and S2 given by a Poisson distribution

Comparing with XENON1T

- Both groups capable of demonstrating the excellent properties of LXe
 - \circ $\,$ LZ better by ~17% at 2.617 MeV $\,$
 - $\circ~$ LZ performing better than the resolution used in the projected sensitivities for Xe-136 0v2\beta ~

COLLABORATION, LUX-ZEPLIN LZ, et al. Projected sensitivity of the LUX-ZEPLIN experiment to the $0\nu\beta\beta$ decay of Xe 136. Physical Review C, 2020, 102.1: 014602.

Energy resolution and linearity of XENON1T in the MeV energy range

- The LZ experiment, while primarily designed for a WIMP search, has a considerable sensitivity to neutrinoless double beta decay of ¹³⁶Xe and ¹³⁴Xe isotopes
- The experiment has ended its inaugural science run with 60 live days

Aalbers et al., "First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment," vol. 33, 2022. [Online]. Available: <u>https://arxiv.org/pdf/2207.03764.pdf</u>

- In this work we demonstrated the record energy resolution for any LXe detector
 - Resolution of 0.67 ± 0.01% at 2614 keV for the full fiducial
 - Resolution of 0.63 ± 0.02% at 2614 keV for the bottom part of the detector (due to improved S1 collection)

LZ (LUX-ZEPLIN) Collaboration

35 Institutions: 250 scientists, engineers, and technical staff

- **Black Hills State University**
- **Brandeis University**
- **Brookhaven National Laboratory**
- **Brown University**
- **Center for Underground Physics** .
- Edinburgh University .
- Fermi National Accelerator Lab.
- Imperial College London •
- Lawrence Berkeley National Lab. •
- Lawrence Livermore National Lab.
- LIP Coimbra
- **Northwestern University** •
- **Pennsylvania State University**
- **Royal Holloway University of London**
- **SLAC National Accelerator Lab.**
- South Dakota School of Mines & Tech •
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- **Texas A&M University**
- **University of Albany, SUNY**
- University of Alabama
- University of Bristol
- **University College London** .
- University of California Berkeley
- **University of California Davis**
- **University of California Los Angeles**
- **University of California Santa Barbara** •
- **University of Liverpool** .
- **University of Maryland**
- University of Massachusetts, Amherst •
- **University of Michigan**
- **University of Oxford** .
- University of Rochester
- **University of Sheffield** .
- University of Wisconsin, Madison

Thanks to our

sponsors and

participating

institutions!

LZ Collaboration Meeting - September 8-11, 2021

LABORATÓRIO DE INSTRUMENTAÇÃO

Thank you! (Obrigado)

Backups

- Improved Xe-127 208 keV and 380 keV (L shells) results
 - Takes into account unresolved contribution from the M-shell EC
 - Two summed gaussians with a fixed energy difference of **4.1 keV** and relative contribution of **22%**
 - \circ Improves results by 0.5 σ

The observed intensities of K-, L-, M-, and N-shell EC X-rays as fraction of parent
127Xe decays

2		Events	Amplitude	Expected (%)	Observed (%)
K	33.2 keV	2067	18200 ± 400	83.37	82.7 ± 2.4
L	5.2 keV	542	3090 ± 130	13.09	14.1 ± 0.7
Μ	1.1 keV	164	580 ± 50	2.88	2.6 ± 0.2
N	186 eV	31	133 ± 23	0.66	0.6 ± 0.1

Link: Xe-127 analysis in LUX

AKERIB, D. S., et al. Ultralow energy calibration of LUX detector using Xe 127 electron capture. *Physical Review D*, 2017, 96.11:

Spatial S1 & S2 Corrections

- Spatial Corrections calculated by a product of two splines:
 - 2D RZ spline $(C1_{rz})$ a function of $\mathbf{R}^2 = x^2 + y^2$ and \mathbf{t}_d with a high number of bins (12)
 - 3D XYZ spline $(C\bar{1}_{xyz})$ a function of **XY** and \mathbf{t}_{d} with a lower number of bins (6)
 - The corrections <u>normalized at the center of detector</u> (0 mm, 0 mm, 475 μs)

$$S1_c = S1_{raw} rac{C1_{rz}(0,475) \ C1_{xyz}(0,0,475)}{C1_{rz}(r^2,t_d) \ C1_{xyz}(x,y,t_d)}$$

- Spatial Corrections calculated by a product of two splines:
 - 2D RZ spline $(C2_{rz})$ a function of $\mathbf{R}^2 = x^2 + y^2$ and \mathbf{t}_d with a high number of bins (12)
 - 2D XY spline $(C2_{xv})$ a function of **XY** with a high number of bins (15)
 - The corrections normalized at the center of detector (0 mm, 0 mm, 475 μ s)

$$S2_c = S2_{raw} \; C_{lc}(x,y) \; rac{C2_{rz}(0,475) \; C2_{xy}(0,0)}{C2_{rz}(r^2,t_d) \; C2_{xy}(x,y)} \; e^{t_d/E_{lt}(t_s)}$$

 $t_d = drift time, \mu s$ $t_s = event trigger timestamp, unix time$ $E_u = time dependent electron lifetime$

Spatial S1 & S2 Corrections

