

Recent results from DEAP-3600

DEAP

Dr. Michela Lai on behalf of DEAP-3600 Collaboration

LIDINE2022 - 21 SEPTEMBER 2022

DEAP Collaboration

Laboratories Laboratoires Nucléaires Canadiens

Canadian Nuclear

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Pulse shape discrimination

 $au_{rec} = 175.5 ns$ $R_t = 0.71$ $R_s = 0.23$ $\tau_s = 8.2ns$

Eur. Phys. J. C 80, 303 (2020)

\rightarrow Modeled scintillation pulse shape due to ³⁹Ar β decays

 \rightarrow At about 18 keV_{ee} and a nuclear recoil acceptance of 50 % a leakage probability of about 10⁻¹⁰ is reached

Eur. Phys. J. C 81,823 (2021)

Hardware upgrades: pyrene coating

 \rightarrow Argon condensed on the flowguides may scintillate due to alphas from ²¹⁰Po Signal degraded by the detector geometry eventually enters WIMP ROI Change the flowguides with new ones, coated with a wavelength-shifter → Preference for the **Pyrene**, due to the much slower time decays Installation of external cooling system, to prevent argon condensation on flowguides

Hardware upgrades: dust removal

- enter WIMP ROI
- dust radius

Constrains on NREFT interactions...

The results from 2019 analysis were reinterpreted in terms of a **Non** relativistic effective field theory (NREFT)

Phys. Rev. D 102, 082001 (2020)

... and with non-standard halo

GAIA and Sloan Digital Sky Survey recently observed inflating clumps and streams around our Galaxy

Multi-scattering search

Ultra-heavy dark matter is expected in GUTs but cannot be produced with WIMPs freeze out mechanism

- At such **high masses**, constrains are limited by the dark matter abundance rather than the cross-section, so a large detector is needed
- Experimentally allowed cross-sections are high enough to produce multiple scatters in the detector
- ⇒ Dark matter (DM) candidates above $\sigma_{\chi^{-n}} \cong 10^{-25} \text{ cm}^2$ and $m_{\chi} \gtrsim 10^{12} \text{ GeV can reach underground detectors}$

Multi-scattering particle along a collinear track

Background rejection

- Below 10 MeV: Set analysis threshold on N_{peaks}, according to the energy range to reject **pile-up events**
- Above 10 MeV: dominant background are **muons**, mainly rejected with the muon veto coincidence cut

Phys. Rev. D, 100, 072009 (2019)

ROI	PE range	Energy [MeV _{ee}]	$N_{ m peaks}^{ m min}$	$F_{\mathrm{prompt}}^{\mathrm{max}}$	μ_b
1	4000-20 000	0.5–2.9	7	0.10	$(4 \pm 3) \times 10^{-2}$
2	20 000-30 000	2.9–4.4	5	0.10	$(6 \pm 1) \times 10^{-4}$
3	30 000-70 000	4.4–10.4	4	0.10	$(6 \pm 2) \times 10^{-4}$
4	$70000-4 \times 10^8$	10.4–60 000	0	0.05	$(10 \pm 3) \times 10^{-3}$

Total background level = 0.05 ± 0.03

Background rejection

- Below 10 MeV: Set analysis threshold on N_{peaks}, according to the energy range to reject **pile-up events**
- Above 10 MeV: dominant background are **muons**, mainly rejected with the muon veto coincidence cut

Phys. Rev. D, 100, 072009 (2019)

FILYS. NEV. D, 100, 072003 (2013)						
ROI	PE range	Energy [MeV _{ee}]	$N_{ m peaks}^{ m min}$	$F_{\mathrm{prompt}}^{\mathrm{max}}$	μ_b	N _{obs}
1	4000-20 000	0.5–2.9	7	0.10	$(4 \pm 3) \times 10^{-2}$	0
2	20 000-30 000	2.9–4.4	5	0.10	$(6 \pm 1) \times 10^{-4}$	0
3	30 000-70 000	4.4–10.4	4	0.10	$(6 \pm 2) \times 10^{-4}$	0
4	$70000-4 \times 10^8$	10.4–60 000	0	0.05	$(10 \pm 3) \times 10^{-3}$	0

Total background level = 0.05 ± 0.03

Exclusion limits on the multi-scatter frontier

- Model 1: dark matter candidate opaque to the nucleus
- Limits on strongly interacting, composite dark matter candidates. $d\sigma_{T_{\gamma}} d\sigma_{n\gamma} = \sigma_{T_{\gamma}}$

$$\frac{d \sigma_{I\chi}}{d E_R} = \frac{d \sigma_{n\chi}}{d E_R} \left| F_T(q) \right|^2$$
Phys. Reference of the second secon

• Model 2: nuclear dark matter models, with N_D nucleons, each with mass m_D and radius r_D,

$$\frac{d\sigma_{T\chi}}{dE_R} = N_D^2 \frac{d\sigma_{nD}}{dE_R} |F_T(q)|^2 A^4 |F_{\chi}(q)|^2$$
$$\frac{d\sigma_{T\chi}}{dE_R} = A^4 \frac{d\sigma_{n\chi}}{dE_R}$$

ev. Lett. 128, 011801 (2022)

Take home

- ► Most stringent exclusion limit for high mass WIMPs in liquid argon
- →Pulse shape of the signal carefully modeled
- →Best PSD discrimination in liquid argon
- ► Installation of new external cooling and filtering system
- →Installation of pyrene coated flow guides
- Re-analysis of the WIMP results with NREFT and non-standard galactic halo
- →Unique sensitivity to heavy, multi-scattering dark matter candidates up to Planck Scale masses
- New WIMP search: **coming soon**!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480 (DarkWave)

Bacauto

Dr. Michela Lai on behalf of DEAP-3600 Collaboration

LIDINE2022 - 21 SEPTEMBER 2022

The detector

Heavy dark matter

Expected in GUTs but cannot be produced with WIMPs freeze out mechanism.

 χ_1

 sm

Primordial black holes ($M \lesssim 5 \times 10^8 g$ **)** can produce heavy dark matter candidates ($m_{DM} \gtrsim 10^9 GeV$) by Hawking evaporation.

J. High Energ. Phys. 2019, 1 (2019).

For more details: https://arxiv.org/abs/2203.06508

Inflational gravitational production, in quantum field theories in a curved spacetime, of dark matter up to Hubble inflation scale and beyond that, with higher spin dark matter.

arXiv:1808.08236

Thermally produced in a **secluded sector**, where DM is a degenerate state of N particles,

 $\chi_i + SM \leftrightarrow \chi_{i+1} + SM \qquad \chi_N \to SM + SM$ These DM particles can reach Planck scale masses.

Backgrounds

- Electron recoil background fully modeled up to 10 MeV
- Measured ${}^{42}Ar/{}^{42}K$ activity = $40.4 \pm 5.9 \mu Bq/kg$

Phys. Rev. D 100, 072009 (2019)

Surface alphas removed with fiducial cuts, r < 630 mm

- Neck alphas removed with:
- o Fprompt upper cut
- Early pulses in Gas Argon PMTs
- Charge fraction in top 2 PMT rings
- MVA selection cuts (ongoing)

Background sources

- **Bulk alphas**: energy fully deposited in LAr, much above WIMP **R**OI
- Surface alphas: most of the energy lost in TPB and/or acylic, giving a lower energy deposit in LAr. Might fall in WIMP ROI.
- **Fiducialization** volume cut at r < 630 mm

Background sources

- ²¹⁰ Po releases alphas in the acrylic of the flowguides
- Alphas scintillate in the LAr film on the flowguides
- Their light is **shadowed** by the flowguide geometry and might enter the WIMP ROI.

Rejection techniques:

- F_{prompt} upper cut
- Early pulses in Gas Argon PMTs
- Charge fraction in top 2 PMT rings
- Near future: multivariate analysis with high efficiency in vetoing neck alphas

Simulation of the signal

The dark matter particle is generated at 80 km from Earth Surface.

