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DYNAMO
Dynamo means amplification (re-generation) of magnetic fields due to plasma 
motions (MHD). 

Generation of magnetic fields from zero is termed the battery (non-MHD). 

Dynamos are inferred to operate in: 

planets (inc. Earth), supporting their magnetospheres against diffusion, polarity 
reversals; 

low-mass stars (inc. Sun), explaining their activity cycles with polarity reversals; 

spiral galaxies (inc. Milky Way), explaining their globally ordered fields; 

(possibly) accretion disks, a hypothesis for the origin of poloidal fields that 
launch relativistic jets; 

(possibly) proto-neutron stars, a hypothesis for the origin of magnetar fields.
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Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

21/09/2016

7

Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

21/09/2016

7

Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

21/09/2016

7

Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

21/09/2016

7

Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

21/09/2016

7

Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

21/09/2016

7

Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

21/09/2016

7

Magnetic Reynolds numbers of some astrophysical objects

6.2. Stretch-Twist-Fold: a conceptual dynamo 
(Zeldovich’s rope dynamo)

! doubles after each cycle  #: ! ∝ 2# ∝ exp + , 				+ =  #&'ln	2.

Yakov Borisovich Zeldovich, IAU Symp., Prague, 1968

Zeldovich (1983) 
Childress & Gilbert (1995)



LOCAL CHANGE 
OF MAGNETIC FIELD

Recall the induction equation in ideal MHD:  

Kinematic dynamo:  affects  (via induction equation), but  does not affect . 

Expanding the curl of vector cross product: 

 

 means velocity shear along ; 

 means transport (advection) of  along ; 

 means compression due to velocity convergence.

∂ ⃗B
∂t

= ⃗∇ × ( ⃗v × ⃗B )
⃗v ⃗B ⃗B ⃗v

∂ ⃗B
∂t

= ( ⃗B ⋅ ⃗∇ ) ⃗v − ( ⃗v ⋅ ⃗∇ ) ⃗B − ⃗B ( ⃗∇ ⋅ ⃗v )

( ⃗B ⋅ ⃗∇ ) ⃗v ⃗B

−( ⃗v ⋅ ⃗∇ ) ⃗B ⃗B ⃗v

− ⃗B ( ⃗∇ ⋅ ⃗v )



LOCAL CHANGE 
OF MAGNETIC ENERGY DENSITY

 

recall the magnetic energy density: 

 

evolution of magnetic energy density: 

 

with contributions from shear, transport and compression, 
respectively.

∂ ⃗B
∂t

= ( ⃗B ⋅ ⃗∇ ) ⃗v − ( ⃗v ⋅ ⃗∇ ) ⃗B − ⃗B ( ⃗∇ ⋅ ⃗v )

uB =
B2

8π
≡

⃗B ⋅ ⃗B
8π

∂uB

∂t
=

⃗B
4π

⋅
∂ ⃗B
∂t

=
1

4π [ ⃗B ⋅ ( ⃗B ⋅ ⃗∇ ) ⃗v − ( ⃗v ⋅ ⃗∇ ) B2

2
− B2 ( ⃗∇ ⋅ ⃗v )]



EXAMPLE: 
AMPLIFICATION BY SHEAR

Consider a sheared velocity field  

Velocity gradient  has one non-zero component:  

The shear term of the induction equation: 

 

The transport and compression terms vanish. 

Magnetic energy changes at the rate:

 

In this illustration  and . Magnetic energy 
grows since the field line is stretched by velocity shear.

⃗v = vx(y) ̂x

⃗∇ vx ∂yvx

( ⃗B ⋅ ⃗∇ ) ⃗v = By∂yvx ̂x

⃗B
4π

⋅ ( ⃗B ⋅ ⃗∇ ) ⃗v =
BxBy

4π
∂yvx

∂yvx > 0 BxBy > 0

x

y



EXAMPLE: 
AMPLIFICATION BY TRANSPORT

Consider a uniform velocity shear  

The transport term of the induction equation: 

 

The shear and compression terms vanish. 

Magnetic energy changes at the rate: 

 

In this illustration  and . Stronger 
magnetic field on the left is transported to the right.

⃗v = vx ̂x

−( ⃗v ⋅ ⃗∇ ) ⃗B = − vx∂x
⃗B

−( ⃗v ⋅ ⃗∇ ) B2

8π
= − vx

∂x(B2)
8π

vx > 0 ∂xB < 0

x

y



EXAMPLE: 
AMPLIFICATION BY COMPRESSION

Consider a converging velocity shear  with 
uniform divergence , and uniform magnetic field 

. 

The compression term of the induction equation: 

 

The shear term is , canceling 

the   component of the compression term. 
The transport term vanishes. 

Magnetic energy changes at the rate: 

⃗v = vx(x) ̂x
∂xvx < 0

⃗B = [Bx, By,0]

− ⃗B ( ⃗∇ ⋅ ⃗v ) = − ⃗B ∂xvx

( ⃗B ⋅ ⃗∇ ) ⃗v = Bx ∂xvx

x

1
4π [ ⃗B ⋅ ( ⃗B ⋅ ⃗∇ ) ⃗v − B2 ( ⃗∇ ⋅ ⃗v )] = −

B2
y

4π
∂xvx

x

y



GEODYNAMO
Earth’s magnetic field decays on 
the time scale of ~50 kyr. 

A regeneration mechanism is 
necessary - the geodynamo. 

The geodynamo is supported by 
circulation of conducting matter, 
which is possible in the fluid 
outer core due to convection. 

Convection is enabled by a net 
heat flow from the core to the 
much cooler mantle. 

The Earth’s rotation and Coriolis 
forces are important for shaping 
the core convection.

Andrew Z. Colvin, CC BY-SA 4.0, Wikimedia Commons



SOLAR DYNAMO: 
NUMERICAL SIMULATIONS

global 3D MHD 
simulations of the 
solar convective layer 

bands of strong 
toroidal magnetic 
field are generated at 
the latitudes 
consistent with the 
occurence of 
sunspots

Brun & Browning (2017)



DIFFERENTIAL ROTATION 
OF THE SUN

6 Rachel Howe

Figure 1: A section through the interior of the Sun, showing the contours of constant rotation and the
major features of the rotation profile, for a temporal average over about 12 years of MDI data. The cross-
hatched areas indicate the regions in which it is di�cult or impossible to obtain reliable inversion results
with the available data.

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2009-1

Howe (2009)
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AXISYMMETRIC FIELDS
Consider a magnetic field structure with axial symmetry 
in cylindrical coordinates , decomposed into 
toroidal and poloidal components:  . 

The poloidal component  can be 
represented by toroidal component of magnetic vector 
potential  . 

If both  and  are independent of ,  is 
satisfied automatically.

(r, ϕ, z)
⃗B = Bϕ

̂ϕ + ⃗B p

⃗B p ≡ Br ̂r + Bz ̂z

⃗B p = ⃗∇ × (Aϕ
̂ϕ)

Bϕ Aϕ ϕ ⃗∇ ⋅ ⃗B = 0



DIFFERENTIAL ROTATION
Consider azimuthal velocity field , where  is the angular 
velocity that allows for a vertically differential rotation  . 

The azimuthal induction equation includes the shear and transport terms (note 
that ): 

 

Material derivatives in curved coordinates! 

 

     the  effect! 

differential rotation together with poloidal field make a source term for the 
growth of toroidal field.

⃗v = r Ω(z) ̂ϕ Ω(z)
dΩ/dz ≠ 0

⃗∇ ⋅ ⃗v = 0
∂tBϕ = [( ⃗B ⋅ ⃗∇ ) ⃗v ]ϕ

− [( ⃗v ⋅ ⃗∇ ) ⃗B ]ϕ

∂tBϕ = [( ⃗B p ⋅ ⃗∇ )vϕ
̂ϕ]ϕ

−
Brvϕ

r

∂tBϕ = r [( ⃗B p ⋅ ⃗∇ )
vϕ

r
̂ϕ]

ϕ
= rBz

dΩ
dz

Ω



INDUCTION OF POLOIDAL FIELD

Consider the axial induction equation: 

 

For  and , both RHS terms vanish, 
hence the axial field cannot be induced in this case. 

The loop  cannot be closed for 
axisymmetric velocity field. This is the simplest case 
of the Cowling’s theorem.

∂tBz = [( ⃗B ⋅ ⃗∇ ) ⃗v ]z
− [( ⃗v ⋅ ⃗∇ ) ⃗B ]z

vz = 0 ∂ϕBz = 0

Bz → Bϕ → Bz



BREAKING 
THE AXIAL SYMMETRY
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Now suppose that the fluid motion comes to a halt after having rotated through tt/2 
in the vicinity of the f-axis. Then, in the vicinity of the f-axis, the field has been rotated 
to the ^-direction. Assuming Z(\) and ^(X) to be Gaussian functions, we put 

Z (X) = a* (X) = 0 J exp (32) 

For this case, B is shown by the solid lines in Figure 1; (3 is shown by the continuous 
ribbons in Figure 2. The intermittent ribbons in Figure 1 represent —(3. The lines of 
force of a, which is 5 — 5, form the closed curves obtained by combining the solid and 
the broken ribbons in Figure 1. Since 5 is just the projection of B on the frç-plane, the 
closed curves lie on cylindrical surfaces which are parallel to the f-axis. Figure 3, a, 
shows the surface inclosed by the lines through P and Q in Figure 1. Figure 3, b, shows 

Fig 1.—The deformation of a slab of toroidal field by cyclonic fluid motion. The ribbons under- 
neath represent — ß. 

Fig. 2.—The deformation of a slab of toroidal field by a cyclonic fluid motion in the absence of vertical 
motion. This is the field +ß. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Parker (1955)

“cyclonic” motions 
(convection + Coriolis)



MEAN-FIELD 
ELECTRODYNAMICS

In addition to globally symmetric mean magnetic and 
velocity fields , one can consider small-scale 
(turbulent) fluctuations : 

   and    . 

Not a linearization, but averaging fluctuations over 
sufficiently large scales gives  and 

 .

⃗B 0, ⃗v 0 ⃗B 1, ⃗v 1⃗B = ⃗B 0 + ⃗B 1 ⃗v = ⃗v 0 + ⃗v 1

⟨ ⃗B ⟩ ≃ ⃗B 0

⟨ ⃗v ⟩ ≃ ⃗v 0



MEAN-FIELD 
INDUCTION EQUATION

The induction equation: 
 

 

Assuming that : 

 

   mean turbulent electromotive force

∂t
⃗B = ⃗∇ × ( ⃗v × ⃗B )

∂t⟨ ⃗B 0⟩ = ⃗∇ × ⟨( ⃗v 0 + ⃗v 1) × ( ⃗B 0 + ⃗B 1)⟩

⟨ ⃗v 0 × ⃗B 1⟩ + ⟨ ⃗v 1 × ⃗B 0⟩ = 0

∂t⟨ ⃗B 0⟩ = ⃗∇ × (⟨ ⃗v 0⟩ × ⟨ ⃗B 0⟩ + ⟨ ⃗v 1 × ⃗B 1⟩)
⃗ℰ ≡ ⟨ ⃗v 1 × ⃗B 1⟩



MEAN TURBULENT 
ELECTROMOTIVE FORCE

 

   where  is a symmetric tensor. 

substituting to the mean-field induction equation: 

 

the  effect!

⃗ℰ ≡ ⟨ ⃗v 1 × ⃗B 1⟩

ℰi = αij ⟨B0⟩j
αij

∂t⟨ ⃗B 0⟩ = ⃗∇ × (⟨ ⃗v 0⟩ × ⟨ ⃗B 0⟩ + α⟨ ⃗B 0⟩)
α



Induction of the mean axial field: 

 

Induction of the mean toroidal field: 

 

When the  term dominates:  dynamo (stars) 

When the  term dominates:  dynamo (planets) 

When the terms are comparable:  dynamo (galaxies)

∂t⟨Bz⟩ = [ ⃗∇ × (α⟨ ⃗B 0⟩)]
z

=
1
r

∂r (rα⟨Bϕ⟩)

∂t⟨Bϕ⟩ = r⟨Bz⟩ dΩ
dz

− ∂r (α⟨Bz⟩)

r ⟨Bz⟩ dΩ
dz

αΩ

∂r (α ⟨Bz⟩) α2

α2Ω

MEAN-FIELD DYNAMO



BIERMANN BATTERY
Can magnetic field be created from scratch? Note that for  
resistive MHD predicts , hence . 

More general regime: two-fluid plasma (electrons decoupled from ions). 

Consider electrons under a balance of Lorentz force and pressure 
gradient, , with . 

From the Maxwell-Faraday equation: 

 

 

density gradient misaligned with the temperature gradient

⃗B = 0
⃗E = 0 ∂t

⃗B = 0

⃗fe = − ⃗∇ Pe − ene
⃗E = 0 Pe = nekBTe

∂t
⃗B = − c ⃗∇ × ⃗E = c ⃗∇ × (

⃗∇ Pe

ene ) =
ckB

e
⃗∇ × [

⃗∇ (neTe)
ne ]

∂t
⃗B =

ckB

e (
⃗∇ ne

ne ) × ( ⃗∇ Te)



SUMMARY
Dynamo is a mechanism of amplifying magnetic fields using 
the kinetic energy of plasma motions. 

Local magnetic energy density can be amplified due to 
shear, transport or compression. 

Dynamo can operate as a positive-feedback cycle. Zeldovich 
cycle: stretch - twist - fold - merge.  

In axially symmetric systems (planets, stars, galaxies), 
toroidal fields can be amplified by shear due to differential 
rotation (  effect), poloidal fields can be amplified by 
turbulent electromotive force (  effect).

Ω
α


