PROBLEM 8: BLACK HOLE FIELD

• Estimate (order of magnitude) the magnetic field strength in the immediate vicinity of a black hole of mass (1) $10M_{\odot}$, (2) 10^9M_{\odot} sufficient to drive a Poynting flux (through the $4\pi R_{\rm Sch}^2$ cross section) equal to the Eddington luminosity.

This problem is worth 5 points. Solutions should be sent as 1-page PDF files to <u>knalew@camk.edu.pl</u> before the next lecture.

TOTAL POYNTING FLUX

• Poynting flux (density):
$$\vec{S} = \frac{c}{4\pi} \left(\vec{E} \times \vec{B} \right)$$

• electric field strength: $E \sim \beta B \simeq B$

Poynting flux (total):
$$S = c \frac{B^2}{4\pi} A = c B^2 R_{\text{Sch}}^2$$
,
where $A = 4\pi R_{\text{Sch}}^2$ is the cross section,
and $R_{\text{Sch}} = \frac{2GM}{c^2} \simeq 3 \text{ km} \times \frac{M}{M_{\odot}}$ is the Schwarzschild radius.

EDDINGTON LUMINOSITY

• $B^2 \sim \frac{2\pi m_{\rm p}c^2}{\sigma_{\rm T}R_{\rm Sch}}$

RESULTS

•
$$B \sim \frac{2.2 \times 10^8 \text{ G}}{\sqrt{M/M_{\odot}}}$$

- For $M = 10M_{\odot}$: $B \sim 7 \times 10^7 \,\mathrm{G}$
- For $M = 10^9 M_{\odot}$: $B \sim 7 \times 10^3 \text{ G}$

BLANDFORD-ZNAJEK POWER

•
$$P_{\rm BZ} \propto \frac{ka^2 \Phi_{\rm BH}^2}{R_{\rm Sch}^2} c \text{ for } a < 0.5$$

with a proportionality constant

•
$$k = \frac{1}{6\pi}$$
 for split-monopole field geometry
(Tchekhovskoy et al. 2010)

•
$$\Phi_{\rm BH} \sim 2\pi R_{\rm Sch}^2 B$$

•
$$P_{\rm BZ} \propto a^2 \mathcal{S}$$