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THE SHOCK PROBLEM

Consider a stationary discontinuity along the  
plane (with a normal vector ). 

A fluid flows from the upstream region 1 ( ) to 
the downstream region 2 ( ): . 

Given the upstream fluid parameters, what can be the 
downstream fluid parameters?

z = 0
⃗n = [0,0,1]

z < 0
z > 0 v1,z, v2,z > 0

z ⃗n

⃗v 1

⃗v 2

upstream (1)

downstream (2)



HYDRODYNAMIC SHOCK
conservation of mass:  or . 

conservation of energy-momentum: , where  

is the energy-momentum equation for a fluid. 

choosing the reference frame where , hence , 

leaves us with two non-trivial equations:  and . 

adiabatic equation of state: relativistic enthalpy density 
, pressure , relativistic temperature 

, and adiabatic index . 

3 equations for 3 variables: .

Γ2v2,zρ2 = Γ1v1,zρ1 [Γvzρ] = 0

[Tμz
fl ] = 0 Tμν

fl = w
uμuν

c2
+ Pgμν

v1,x = v1,y = 0 v2,x = v2,y = 0

[T0z
fl ] = 0 [Tzz

fl ] = 0

w2 = ρ2c2 + [κ2/(κ2 − 1)]P2 P2 = Θ2ρ2c2

Θ2 = kBT2/mc2 4/3 < κ2(Θ2) < 5/3

v2,z, ρ2, Θ2



NON-RELATIVISTIC 
HYDRODYNAMIC SHOCK

The limit of non-relativistic velocities  and non-relativistic temperatures 
, hence . 

Shock jump equations (Rankine-Hugoniot conditions): 
 (mass conservation), 

 (momentum conservation), 

 (energy conservation). 

Introducing the shock velocity jump, equivalent to the compression ratio: ; 
and eliminating  one obtains . 

Introducing the upstream sound speed  and the Mach number , 
the result is  and hence . 

It can be shown that for  specific entropy satisfies , and also that  and 
: the solution is physical when a supersonic upstream flow converts into a subsonic 

downstream flow.

v1, v2 ≪ c
Θ1, Θ2 ≪ 1 κ1, κ2 = 5/3

ρ2v2 = ρ1v1
ρ2v2

2 + P2 = ρ1v2
1 + P1

( ρ2v2
2

2
+

5
2

P2) v2 = ( ρ1v2
1

2
+

5
2

P1) v1

r = v1/v2 ≡ ρ2/ρ1
v2, P2 (r − 4)ρ1v2

1 + 5rP1 = 0

vs,1 = 5P1/3ρ1 M1 = v1/vs,1
r = 4M2

1 /(M2
1 + 3) P2/P1 = (4r − 1)/(4 − r)

r > 1 s2 > s1 M1 > 1
M2 < 1



MAGNETIC FIELD JUMP
Magnetic field jump is calculated from stationary source-free 
Maxwell’s equations in ideal MHD. 

 
magnetic field parallel to the shock normal is conserved 

 

magnetic field perpendicular to the shock normal is compressed 

The source Maxwell’s equations allow for the presence of electric 
charge and/or electric current of surface densities  
and , etc.

⃗∇ ⋅ ⃗B = 0 → ∂zBz = 0 → [Bz] = 0

⃗∇ × ⃗E = 0 → ∂zEx = ∂zEy = 0 → [Bxvz − Bzvx] = [Byvz − Bzvy] = 0

Σe = [Ez]/4π
𝒥y = (c/4π)[Bx]



MAGNETIZED SHOCKS

Let ,  and  

parallel shocks: , hence . Parallel 
magnetic field cancels out from the shock jump equations, which 
reduce to the hydrodynamic form. 

perpendicular shocks: , hence . Perpendicular 
magnetic field contributes to the shock jump equations. 

oblique shocks:  and , hence .

⃗B 1 = (B1,x,0,Bz) ⃗B 2 = (B2,x,0,Bz) ⃗v 1 = [0,0,v1,z]

⃗B 1, ⃗B 2 ∥ ⃗n B1,x = B2,x = 0

⃗B 1, ⃗B 2 ⊥ ⃗n Bz = 0

Bz ≠ 0 B1,x ≠ 0 B2,x ≠ 0



MAGNETIC ENERGY-MOMENTUM TENSOR

consider an upstream magnetic field  

recall the upstream velocity  

non-zero elements of the  tensor: 

 (energy) 

  (perpendicular momentum, generates  

in oblique fields) 

 (parallel momentum;  and 

 terms cancel out)

⃗B 1 = (B1,x,0,Bz)
⃗β 1 = (0,0,β1)

Tμz
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T0z
EM,1 = β1

B2
1,x

4π

Txz
EM,1 = −

B1,xBz

4π
β2,x

Tzz
EM,1 = (1 + β2
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B2
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8π
−

B2
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8π
B2

z

β2
1 B2
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NON-RELATIVISTIC 
PERPENDICULAR SHOCK

Shock jump equations: 
   (continuity) 

   (momentum) 

 

                                                                                      (energy) 
   (electric field) 

Using , they reduce to: 

 

Introducing the upstream Alfvén speed  and the Alfvén Mach number 

 results in a quadratic equation  that has only one 

physical solution for , i.e., super-fast-magnetosonic upstream flow.

ρ2v2 = ρ1v1

ρ2v2
2 + P2 +
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2,x

8π
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4π ) v1
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r = v1/v2

(r − 4)ρ1v2
1 + 5rP1 + r(r + 5)

B2
1,x

8π
= 0

vA,1 = B1,x / 4πρ1
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+
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RELATIVISTIC 
PERPENDICULAR SHOCK

   (continuity) 

   (momentum) 

   (energy) 

   (electric field)

Γ2ρ2β2 = Γ1ρ1β1

Γ2
2w2β2

2 + P2 +
B2

2,x

8π
= Γ2

1w1β2
1 + P1 +

B2
1,x

8π

Γ2
2w2β2 +

B2
2,x

4π
β2 = Γ2

1w1β1 +
B2

1,x

4π
β1

B2,xβ2 = B1,xβ1



numerical 
solutions 
in the limit 
of cold 
upstream 
gas 
( ).T1 = 0

RELATIVISTIC 
PERPENDICULAR SHOCK



ULTRA-RELATIVISTIC 
PERPENDICULAR SHOCK
Consider the limit of , hence .  
Let , and  like before. 
Introduce upstream magnetization . 
Anticipating , adopt  and . 

   (momentum) 

 

   (energy) 

 

 

Γ1 ≫ 1 β1 ≃ 1
r = β1/β2 ≃ 1/β2 B2,x = rB1,x

σ1 = B2
1,x /(4πΓ2

1w1)
Θ2 ≫ 1 κ2 ≃ 4/3 w2 = 4P2

Γ2
2w2β2

2 + P2 +
B2

2,x

8π
= Γ2

1w1β2
1 + P1 +

B2
1,x

8π
r2 + 3
r2 − 1

P2 ≃ [1 − (r2 − 1)
σ1

2 ] Γ2
1w1

Γ2
2w2β2 +

B2
2,x

4π
β2 = Γ2

1w1β1 +
B2

1,x

4π
β1

4r
r2 − 1

P2 ≃ [1 − (r − 1)σ1] Γ2
1w1

P2

(r2 − 1)Γ2
1w1

≃
2 − (r2 − 1)σ1

2(r2 + 3)
≃

1 − (r − 1)σ1

4r

σ1 ≃ −
(r − 3)

(r − 1)(r + 3)



 

Solution:    

Hydrodynamic limit ( ): , velocity , density 
, pressure , temperature 

. 

Relativistic magnetization ( ): , velocity 
, density , pressure , 

temperature .

σ1 ≃ −
(r − 3)

(r − 1)(r + 3)

r ≃
1 + 2σ1

2σ1
2 1 −

3
4(1 + 2σ1)2

− 1

σ1 = 0 r ≃ 3 β2 ≃ 1/3
ρ2 ≃ 8 Γ1ρ1 P2 ≃ (2/3)Γ2

1w1
Θ2 ≃ (1/3 2)(Γ1w1/ρ1c2)

Γ1 > σ1 ≫ 1 r ≃ 1 + 1/(2σ1)
β2 ≃ 1 − 1/(2σ1) ρ2 ≃ Γ1ρ1/ σ1 P2 ≃ Γ2

1w1/(8σ1)
Θ2 = P2/ρ2c2 = (1/8 σ1)(Γ1w1/ρ1c2)

ULTRA-RELATIVISTIC 
PERPENDICULAR SHOCK



FERMI PROCESS IN 
COLLISIONLESS SHOCKS

Selected 
particles gain 
energy at each 
shock crossing. 

Multiple 
crossing allowed 
by scattering off 
turbulent 
fluctuations.
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ABSTRACT
We present evidence that relativistic shocks propagating in unmagnetized plasmas can self-consistently accel-

erate particles. We use long-term two-dimensional particle-in-cell simulations to study the well-developed shock
structure in unmagnetized pair plasma. The particle spectrum downstream of such a shock consists of two
components: a relativistic Maxwellian, with a characteristic temperature set by the upstream kinetic energy of
the flow, and a high-energy tail, extending to energies 1100 times that of the thermal peak. This high-energy
tail is best fitted as a power law in energy with index !2.4 " 0.1, modified by an exponential cutoff. The cutoff
moves to higher energies with time of the simulation, leaving a larger power-law range. The number of particles
in the tail is ∼1% of the downstream population, and they carry ∼10% of the kinetic energy in the downstream
region. Investigating the trajectories of particles in the tail, we find that the energy gains occur as particles bounce
between the upstream and downstream regions in the magnetic fields generated by the Weibel instability. We
compare this mechanism to the first-order Fermi acceleration and set a lower limit on the efficiency of the shock
acceleration process.
Subject headings: acceleration of particles — gamma rays: bursts — shock waves

1. INTRODUCTION

Acceleration of particles in collisionless shocks is at the heart
of most models of nonthermal phenomena in the universe.
Observations of synchrotron emission from astrophysical
sources suggest that collisionless shocks in pulsar wind nebulae
(PWNe), jets from active galactic nuclei, gamma-ray bursts
(GRBs), and supernova remnants can convert a significant frac-
tion of the flow energy into relativistic particles with power-
law nonthermal spectra. This is usually attributed to the first-
order Fermi mechanism—a process in which particles scatter
between the upstream and downstream regions of shocks to
gain energy (see Blandford & Eichler 1987 for review). Yet,
despite its significance in astrophysics, the Fermi mechanism
has not been demonstrated to work self-consistently from first
principles, and its efficiency and conditions for operation are
not well understood. Most progress in studying shock accel-
eration has been made using Monte Carlo test particle simu-
lations (e.g., Ostrowski & Bednarz 1998; Ellison & Double
2004) and semianalytic kinetic theory methods (e.g., Kirk et
al. 2000; Achterberg et al. 2001; Keshet & Waxman 2005).
Both methods study particle acceleration with certain assump-
tions about the scattering processes near shocks, which in turn
depend on the nature of magnetic turbulence in the flow.
Whether or not realistic shock turbulence leads to particle ac-
celeration is currently unknown. This is especially true in the
case of relativistic shocks, where observational constraints on
the turbulence properties are lacking. The injection efficiency,
or the fraction of particles in the flow that are nonthermally
accelerated, may depend on the details of the shock transition
region and is not well constrained. Resolving these issues re-
quires a self-consistent calculation that can simultaneously cap-
ture the physics of the shock-generated turbulence and the par-
ticle acceleration processes. In this Letter, we demonstrate via
ab initio particle-in-cell (PIC) simulations that relativistic col-
lisionless shocks propagating in initially unmagnetized elec-
tron-positron pair plasmas naturally produce accelerated par-
ticles as part of the shock evolution. These particles form a

1 Department of Astrophysical Sciences, Peyton Hall, Princeton University,
Princeton, NJ 08544; anatoly@astro.princeton.edu.

power-law tail, and we argue that the acceleration process is
very similar to Fermi acceleration. We are thus able to measure
the efficiency of shock acceleration without any assumptions.
The particular case of unmagnetized relativistic shocks that we
consider here is relevant to the prompt and afterglow emission
from GRBs (e.g., Waxman 2006). This is also one of the
cleanest tests of the shock acceleration theory because, in an
initially unmagnetized flow, all magnetic turbulence has to be
self-generated. In § 2 we describe the simulations and shock
structure, and then in § 3 we discuss the particle acceleration
mechanism.

2. COLLISIONLESS SHOCK STRUCTURE

Collisionless shocks in unmagnetized relativistic flows are me-
diated by the Weibel instability (Weibel 1959; Medvedev & Loeb
1999; Gruzinov & Waxman 1999), which converts the free en-
ergy of anisotropic streaming of interpenetrating flows into small-
scale (skin-depth) magnetic fields. The fields grow to subequi-
partition levels and deflect and randomize the bulk flow, creating
the shock compression (Kato 2005; Milosavljević et al. 2006).
PIC simulations of colliding relativistic shells have confirmed
the general picture of the initial stages of the instability (Kazi-
mura et al. 1998; Nishikawa et al. 2003, 2005; Silva et al. 2003;
Frederiksen et al. 2004; Hededal et al. 2004), and have been
evolved through the shock formation stage in both two (Gruzinov
2001; Kato 2007; Spitkovsky 2008, hereafter S08; Chang et al.
2008, hereafter CSA08) and three dimensions (Spitkovsky 2005,
hereafter S05). A persistent feature of all unmagnetized shock
simulations had been the downstream particle spectrum that is
well approximated by a relativistic Maxwellian (S05; Kato 2007).
Reports of nonthermal spectral components in short three-
dimensional (3D) simulations (Nishikawa et al. 2003; Hededal
et al. 2004) can probably be attributed to the incomplete flow
thermalization before a shock fully forms. Long simulations, as
presented in this Letter, show that additional nonthermal spectral
components develop over time.

We use the electromagnetic PIC code TRISTAN-MP (Bune-
man 1993; S05) to simulate a relativistic shock propagating
through an unmagnetized plasma. The shock is triggered by"e
reflecting an incoming cold “upstream” flow that propagates with
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Fig. 2.—Main panel: Particle spectrum in a -wide slice at100(c/q )p

downstream from the shock at time (black line with error4500(c/q ) q t p 10p p

bars). Red line: A fit with a sum of a 2D Maxwellian (yellow dashed line)
and a power law (blue dash-dotted line) with high-energy exponential cutoff.
Subpanel a is the fit with a sum of high and low temperature Maxwellians
(red line), showing a deficit at intermediate energies; subpanel b is the time
evolution of a particle spectrum in a downstream slice: (blue!1t p 1600qp

line), (green line), and (red line). The black dashed line shows!1 4 !13800q 10 qp p

a power law.!2.4g

Fig. 3.—Left panel: Horizontal position as a function of time for four rep-
resentative particles (color lines) overplotted on transversely averaged profiles
of magnetic energy (gray lines). Right panel: Particle energies (shown with
corresponding color lines) as a function of time. All horizontal positions are
shifted by to align them with the shock location. All quantities arex (t)shock

measured in the downstream frame.

Maxwellian and the power law). At , the tail at4q t p 10 g 1p

contains ∼1% of particles and ∼10% of energy in the down-75
stream region.

3. ACCELERATION MECHANISM

We studied the mechanism that populates the suprathermal
tail by tracing the orbits of particles that gain the most energy.
The main acceleration happens near the shock, as seen from
the excess of particles with large 4-velocity near the shock in
Figure 1e. The spacetime trajectories and thex(t) ! x (t)shock

acceleration histories for four representative particles areg(t)
shown in Figure 3. The vast majority of particles in the flow
go through the shock only once and never return to the upstream
region again (orange line in Fig. 3). Some, however, can cross
the shock several times and gain energy. After acceleration
near the shock, these particles escape into the upstream or
downstream region, populating the suprathermal tails (red,
green, and blue lines). The particles that gain the most energy
(red and blue lines) undergo several reflections between the
downstream region (or the shock layer) and the upstream re-
gion, with the largest energy gains coming from reflections in
the upstream region (Fig. 3). Upon each reflection, these par-
ticles gain energy , as expected in relativistic shocks.DE ∼ E
In Figure 3, we overplot the transversely averaged magnetic
energy as line plots stacked in time. Note that all quantities
are still measured in the downstream frame and are only shifted
in space so that the shock appears stationary. Magnetic fluc-
tuations associated with the upstream filaments carry a motional
electric field ( ) as they are advected toward the shock. Par-Ey

ticles moving against the flow in these fields scatter, with a net
energy gain (in contrast, deflections in the downstream region
result in no energy gain, as seen in the downstream frame; in
the shock frame, both scatterings will yield energy gains). The
particles that gain the most energy do not undergo large-angle
scatters on single upstream filaments. Instead, these particles
move almost parallel to the shock surface, across the magnetic

filaments shown in Figure 1b. This is easy to understand be-
cause the characteristic Larmor radius for these particles ex-
ceeds the thickness of the shock, and if they were to move
along the shock normal, they would quickly escape down-
stream. The alternating magnetic polarity of the filaments rep-
resents magnetic fluctuations on scales smaller than the particle
Larmor radius. The deflections in the upstream region toward
the downstream region are thus grazing-incidence collisions
with magnetic islands that are moving toward the shock. The
deflections toward the upstream region happen within several
hundred skin depths behind the shock, where the magnetic field
is strongest. Motion across the filaments increases the effective
length of the scattering region and allows the trapping and
acceleration of high-energy particles near the shock.

4. DISCUSSION

We have shown that relativistic collisionless shocks can self-
consistently accelerate nonthermal particles. The magnetic
fields that are created as part of the Weibel turbulence near
shocks are sufficient to inject particles from the thermal pool
into the shock acceleration process, and our findings do not
require any initial assumptions about the turbulence spectrum.
The acceleration that we observe involves repeated crossings
of the shock by a small fraction of particles. In this sense, it
is tempting to associate this acceleration process with the first-
order Fermi acceleration in shocks. The absence of a coherent
background field in our problem rules out shock-surfing and
shock-drift acceleration. Deviations in particle trajectory are
due to interactions with many magnetic filaments of alternating
magnetic polarity and is, therefore, diffusive in nature. The
exponential cutoff at high energy in the downstream spectrum
can be attributed to the finite acceleration time in the simulation
and to the fact that efficient particle scattering occurs in a layer
of finite width (Bykov & Uvarov 1999). We have not reached
a steady state, however. Both the maximum particle energy and
the extent of the particle precursor continue to grow linearly
with time, and the energy in the tail grows logarithmically. The
region where particles scatter also increases. We conclude that
the simulations show the beginnings of the Fermi acceleration



PARTICLE ACCELERATION 
AT SHOCKS

MHD jump conditions apply to 
shocks in strongly collisional 
plasmas. 

Weakly collisional or collisionless 
plasmas develop shocks with 
complex structure. 

Several acceleration mechanisms 
have been identified, supported by 
various plasma instabilities. 

Shocks in completely unmagnetized 
plasmas generate magnetic fields 
(Weibel instability).
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only one filament undergoes magnetic reconnection, whereas in
the run F2 with mi/me=400 (Figure 1(a1)) all filaments
finally show reconnection. At a given Alfvénic Mach number
VN is almost twice as large for runs with j=45° as with in-
plane magnetic field (compare VN for runs B and G). We do
not observe a systematic correlation of VN with the
plasma beta.

Variations in VN are observed in all simulation runs. Their
amplitude depends on the coherency of the shock self-
reformation along the shock. The time evolution of VN for
run B2 is shown in Figure 2 and is representative for all
simulation runs. VN varies in the range 0.2–1.5 with an
average value about 0.7. The period and the phase of these
variations coincide with the period and the phase of the shock
self-reformation. When the flux of reflected ions is small,
magnetic filaments are almost absent, and VN is low. Magnetic
vortices can also be formed by turbulent plasma motions in the
shock. Thus, even in the absence of magnetic filaments VN is
never zero. The maximum of VN is observed when filaments
have the largest extension and efficiently undergo magnetic
reconnection.

Figure 1. Left panels: the shock ramp in run F2 (j=0°, panel (a1)) at time � 8�t 4.3 i
1. The region marked with dashed red lines in panel (a1) is shown enlarged in

panel (a2). It harbors two chains of magnetic islands. An animation of the time evolution from � 8�t 4.23 i
1 to � 8�t 4.23 i

1, demonstrating the Weibel filaments decay,
is available online. Right panels: the electron density distribution of the shock portion in run G2 (j=45°, panel (b1)) at time t=3.3Ω−1. The magnetic reconnection
region is marked with dashed lines and panel (b2) is zoom-in of the reconnection region. The density is presented in a logarithmic scale and normalized to the
upstream density. Arrows show the in-plane xy-component of the magnetic field.

(An animation of this figure is available.)

Table 2
Vortex Parameters

Run j m mi e VN log10 (ADsim) Equation (3)

A1 0° 50 0.1±0.1 1.08 0.8
A2 0° 50 0.11±0.1 1.11 0.8
B1 0° 100 0.61±0.34 1.09 1.2
B2 0° 100 0.68±0.4 1.08 1.2
C1 0° 100 1.53±0.65 1.01 1.7
C2 0° 100 1.36±0.76 1.02 1.7
D1 0° 200 0.89±0.48 1.12 1.2
D2 0° 200 0.87±0.37 1.1 1.2
E1 0° 200 1.97±0.95 1.08 1.7
E2 0° 200 2.34±0.82 1.07 1.7
F1 0° 400 5.03±1.6 1.01 2.6
F2 0° 400 6.4±2.4 1.03 2.6

G1 45o 100 1.15±0.03 0.86 1.2
G2 45o 100 1.17±0.03 0.87 1.2

Note. VN designates the number of vortices normalized by the transverse size
of the simulation box; the errors are calculated as standard deviations of VN.
ADsim is the normalized average (through whole simulation) electron density
inside magnetic vortices. The last column contains the left-hand side of
Equation (3).

Figure 2. Time evolution of the vortex number, VN (red line), and the
logarithm of the normalized average electron density inside magnetic vortices,
ADstep (blue line), for run B2.
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Planetary bow shocks (non-
relativistic, magnetized) 

Supernova remnants (non-
relativistic, magnetized) 

Pulsar wind nebulae (PWNe) 
(relativistic, magnetized) 

AGN jets (relativistic, 
magnetized) 

Gamma-ray bursts (GRBs) 
(ultra-relativistic, 
unmagnetized)

PARTICLE ACCELERATION 
AT SHOCKS

 

Figure 1. In situ observations made by Cassini on 2008 March 8 over a two-hour interval 

encompassing an inbound crossing of Saturn’s bow shock under quasi-perpendicular upstream 

magnetic conditions. (a) Magnetic field magnitude. (b) Shock angle (θBn, see Section 2). (c) 

Normalized magnitude of magnetic field fluctuations (δB/<B>, see section 2, window duration ~10 

times the typical timescale of downstream magnetic field fluctuations). (d) Energy-time 

spectrogram of electron Differential Intensity (DI) at energies above 18 keV (LEMMS). (e) Energy-

time spectrogram of electron Differential Intensity (DI) at energies below 18 keV (ELS anode 5). 

(e) Energy-time spectrogram of ion count rate (IMS anode 5). 

Saturn/Cassini (Masters et al. 2017)

SNR 0509-67.5 (HST/Chandra)
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Fig. 3.—Adaptively smoothed ChandraHETG–ACIS-S image of the central
of the Crab Nebula. The processed image accentuates small-scale′′ ′′200 # 200

structure, sometimes artificially, but is useful in identifying specific features
in the raw image (Fig. 2). The color bar indicates counts per pixel.

Fig. 4.—Distribution of X-ray hardness in the Crab Nebula. The scatter
diagram, color-coded by location in the nebula, shows hardness (§ 4) againsth2.7
count rate in spatial bins. The horizontal red line denotes average′′ ′′5 # 5
hardness (solid line) and associated error (dashed line) of the trailed image;
the horizontal violet line, average hardness of the timed-exposure image, which
is biased by pileup effects (§ 2). The outer nebula is softer than the trailed-
image average; the jet and counterjet (and its cocoon) have about average
hardness. Note that these data are not quantitatively correct at higher count
rates, due to pileup effects.

of the visible-light “wisp 1” and the “counterwisp” corre-
spond—at least in projection—approximately to the northwest
and southeast quadrants, respectively, of the X-ray inner ring.
On the ring, reside a few compact (about 3!) knots, one lying
southeast of the pulsar, along the projected inward extension
of the jet. The surface brightness of this knot is too high to be
explained as the superposition of the ring’s and jet’s surface
brightnesses.
Having a semimajor axis of about 14! (0.14 pc) and a semi-

minor axis of about 7! (0.07 pc), the projected rotational-
symmetry axis of the inner ring lies about 58! west of north.
The rotational-symmetry axis lies about 30! out of the celestial
plane, consistent with tilts estimated for the X-ray torus (As-
chenbach & Brinkmann 1975) and for various visible-light
structures (Hester et al. 1995).
The most provocative feature of the X-ray torus is the ap-

parent circular structure at each extremity, which resembles the
limb-brightened cross-section of a hollow-tube ring torus, with
8! (0.08 pc) tube radius. Such structures, if indeed present,
significantly constrain models for the inner Crab Nebula. The
apparent tube geometry may indicate a role for relativistic ions
with Larmor radii on this scale (Gallant & Arons 1994) or a
toroidal current which generates a meridional magnetic field
wrapping the torus.
Elsewhere, the torus exhibits circumferential fibrous texture

but no knots. As noted previously (Aschenbach & Brinkmann
1975), the surface brightness varies significantly with toroidal
azimuth, which has been interpreted (Pelling et al. 1987; Grei-
veldinger & Aschenbach 1999) as resulting from moderate rel-
ativistic beaming. In contrast, the surface brightness of the inner
ring is more uniform in azimuth (except for the knots), indi-
cating that relativistic beaming is less significant for it than for
the torus. Measured from the center of the torus to the center
of its tube, the semimajor and semiminor axes are approxi-
mately 38! (0.37 pc) and 18! (0.17 pc), respectively. The
rotational-symmetry axis of the toroid lies about 48! west of
north and about 28! out of the celestial plane. Because the
boundary of the torus is rather diffuse and dependent upon

azimuth, these values are less certain than those for the inner
ring. Nevertheless, the in-plane orientation of the torus differs
noticeably from that of the inner ring, suggesting that the torus
is warped.
The Chandra image probes the jet (to the southeast) and

counterjet (to the northwest) at higher resolution than previous
images with Einstein (Brinkmann et al. 1985) or with ROSAT
(Hester et al. 1995; Greiveldinger & Aschenbach 1999). Al-
though the Chandra image shows little additional structure or
fibrous texture in the jet or counterjet (or “cocoon” encasing
it), it traces them inward closer to the pulsar than previously
possible—at least to its projection onto the inner ring. Besides
the knot at the projected intersection of the jet with the inner
ring, there seems to be another knot, between the inner ring
and the pulsar, on the extension of the jet to inside the inner
ring. Due to pileup around the image of the pulsar, we cannot
exclude that this feature is an artifact. On the other hand, HST
images (Hester et al. 1995) exhibit similar structure (“knot 2”
and “anvil”) in this region (a few arseconds southeast of the
pulsar). However, we need not expect features in the inner Crab
Nebula to be static (e.g., Scargle 1969; Hester et al. 1995;
Greiveldinger & Aschenbach 1999). Indeed, those regions that
show the brightest X-ray emission tend to correspond to es-
pecially dynamic structure (Hester 1998), supporting the in-
terpretation of these features as shocks in the polar jet (Hester
et al. 1995).

4. RESULTS: SPECTRAL VARIATIONS

In examining the spectral distribution, we use standard flight
grades (ASCA grades 02346), for which response matrices cur-
rently exist. First, we define the hardness as the ratio ofh2.7
flux above 2.7 keV to that below 2.7 keV. This energy boundary

Crab PWN (Chandra) 
Weisskopf et al. (2000)



PROBLEM 6: 
SUPERLUMINAL SHOCK

Consider a relativistic shock in reference frame  with normal upstream 
velocity  in coordinates , and oblique upstream 
magnetic field . Ideal MHD is satisfied both 
upstream and downstream. 

Consider another reference frame  moving in  with boost velocity 
. Using the Lorentz transformation, find what are the 

conditions to have: 
(1) , 
(2) . 

Consider a particle that can only move along the local magnetic field. Such a 
particle can easily pass from the upstream region to the downstream region. 
In which case is it possible for this particle to return to the upstream region?

𝒪
⃗v 1 = [0,0,v1] (x, y, z)

⃗B 1 = B1[sin θ1,0, cos θ1]

𝒪′ 𝒪
⃗v b = [vb,0,0]

B′ z = 0
⃗E ′ 1 = 0

This problem is worth 5 points. Solutions should be sent as 1-page PDF files to 
knalew@camk.edu.pl before the next lecture.

mailto:knalew@camk.edu.pl


SUMMARY
Shock waves are discontinuities in flows that dissipate 
kinetic energy. 

Shock jump equations use conservation laws to related 
the upstream and downstream parameters. 

Magnetic field component parallel to the shock normal is 
conserved, the perpendicular component is compressed. 

Shock waves can be sites of non-thermal particle 
acceleration. Selected particles gain energy by multiple 
shock crossings.


