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CONSERVATION
OF PARTICLE NUMBER AND MASS

Consider a (Lagrangian) volume element 0V containing o/N particles.

ON
The particle number density is n = =

Unless particles can be created or destroyed, the particle number is conserved
d(oN) = 0.

For particles of mass m the mass element OM = m oN is conserved d(oM ) = 0.

M den 'ty . P — .
oV

A volume element evolves according to the local velocity field V' (7). Durigg a time
interval dz it will be displaced by d7 = Vv dtf and expand by d(6V) = SV (V - V) dz.

With the material derivative: E o < v -V > 0= E == 2 =7 < Voo v )

Continuity equation: - + V - (n \ ) — ) = + V - (p v ) —{




CONSERVATION
OF MOMENTUM

Consider a force 5 F acting on a fluid element of volume 6V, mass 6M, velocity
V,and momentum ép =V M = p v §V.

. dwp) du
Newton’s second law: 6 F = i — EéM

o dv
Euler equation: o + (v

i o 7
) D

introducing the force density f =

Combined with the continuity equation, this can be written in the tensor form:
()t(pvi) A aj(PViVj) =f i




KINETIC ENERGY
DENSITY

0 %kin
oV

. —
Uyin =

» Continuity and Euler equations lead to:

The last term represents work done on the fluid element in unit time.




INTERNAL ENERGY
DENSITY

0&.
o=
oV

First law of thermodynamics: d(6&’;,,) = T'd(6S) — Pd(6V)
with temperature 7, entropy oS, pressure P.

In an adiabatic process, entropy is conserved, d(6S) = 0O, hence d(6&;,,) = — Pd(6V).

ST e ( v —*>
= — (1. s N
dt_ nt

w=u .+ P = ku,

ratio)

¢ 1s the enthalpy density, with k the adiabatic index (specific heats

For ideal non-relativistic monoatomic gas: k = 5/3, u; . = (3/2)P and w = (5/2)P.

(V-V>P=—=—KP<V-V>
‘dt |



CONSERVATION
OF ENERGY

—

Pressure gradient as a force density: fp =—VP.

Work done by pressure gradient changes the kinetic energy:
A&, = d(6W,) = 6V ( 7> 7) dt = — 6VdP.

Internal energy change: d(6&;,,) = — Pd(6V).
Total energy change: d(6& ) = d(0&,;, + 6&;.,) = — d(P V).
Conservation of total energy: d(6& . + PoV) = 0.

d(6& o + PSV) .
SM >

Bernoulli’s equation:

. . Oy =
equivalent tensor form: > + V.
[




CONSERVATION
OF ENTROPY

Relation between density and pressure variations:
ldp. = 1 db

o e

Adiabatic invariant: d[In(P/p")] = 0.

Adiabatic equation of state: P « p* for a given Lagrangian fluid element.

0S5
Specific entropy: s = — = ¢y, In(P/p*
p py T (P/p"*)

with ¢y, = (3/2)(kg/m): the specific heat capacity at constant volume.

ds = 0: equivalent to energy equation for adiabatic fluid.

Conservation of mass implies the conservation of entropy d(6S) = 0.



EQUATIONS FOR FLUID
DYNAMICS

continuity equation (conservation of mass):

Euler equation (conservation of momentum):

oV - f
ot P

pressure equation (conservation of energy and entropy):

aP ke —_— —_— A
= | (V°V>P+KP(V°V>=O




LINEARIZATION

p = po+pywith |p;| < |pyl, ete.

continuity equation:




LINEARIZATION: UNIFORM
STATIC BACKGROUND

Assume static (v, = 0) and uniform (constant p,, P,) background. This implies that fo = — VPO = (.

continuity equation:

- (p1 Vo) + V- (Po V1) =0

B v

ot

Euler equation:




LINEARIZATION: UNIFORM
STATIC BACKGROUND

Adopt oscillatory velocity perturbation V', o exp (ia)t s 7)

pressure equation:
oP,

or
[P = kP, <ik -71> P, x exp (ia)t+ ik 7»’)

=—KP0(V‘—\71>

Euler equation:
ov, VP,
o T o
kP

Po

e
la)V1=

o 820: stable (w? > 0) wave — the sound wave.

¢, 1s both the phase and group speed (uniform and isotropic) — the speed of sound.
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RELATIVISTIC
SPEED OF SOUND

= ikl
Maxwell-Jiittner distribution f(y) dy = Lo exp <—l>
O K,(1/0) ®

where ©® = kzT/mc? is the relativistic temperature, y = (1 — %)~/ is the particle Lorentz factor,

K5(x) is the modified Bessel function of the second kind. 1.8

1.6}

K,(1/0) "
K5(1/0) 1.2}
pressure P = nkgT = Opc? 1.0}

K |
relativistic enthalpy density w = pc? + : P = [40 + h(®)]pc? 0.8}
o .

mean particle energy (y) = 30 + h(®) with h(®) =

® 0.6}
adiabatic indexx = 1 + " 0.4}
KZD =

0.0l

fsound ¢, = ¢4/ — . ; .
speed of sound ¢, = ¢ - T AT ST
O =kgT/mc?

3 5 5
In the limit of non-relativistic temperatures ® < 1: /(@) ~ 1 — 5@, K = = W pc2 + EP’

/50 5P
Co2Crl— =4]—.
3 3p

In the limit of ultra-relativistic temperatures ® > 1: h(®) = 20’ K ~

Ve



