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CONSERVATION 
OF PARTICLE NUMBER AND MASS

Consider a (Lagrangian) volume element  containing  particles. 

The particle number density is . 

Unless particles can be created or destroyed, the particle number is conserved 
. 

For particles of mass  the mass element  is conserved . 

Mass density is . 

A volume element evolves according to the local velocity field . During a time 
interval  it will be displaced by  and expand by . 

With the material derivative:  

Continuity equation: ,   
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CONSERVATION 
OF MOMENTUM

Consider a force  acting on a fluid element of volume , mass , velocity 
, and momentum . 

Newton’s second law:  

Euler equation: , 

introducing the force density  

Combined with the continuity equation, this can be written in the tensor form: 
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KINETIC ENERGY 
DENSITY

 

Continuity and Euler equations lead to: 

 

 

The last term represents work done on the fluid element in unit time.
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INTERNAL ENERGY 
DENSITY

 

First law of thermodynamics:  
with temperature , entropy , pressure . 

In an adiabatic process, entropy is conserved, , hence . 

 

 is the enthalpy density, with  the adiabatic index (specific heats 
ratio) 

For ideal non-relativistic monoatomic gas: ,  and . 
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CONSERVATION 
OF ENERGY

Pressure gradient as a force density: . 

Work done by pressure gradient changes the kinetic energy: 
. 

Internal energy change: . 

Total energy change: . 

Conservation of total energy: . 

Bernoulli’s equation: . 

equivalent tensor form: .
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CONSERVATION 
 OF ENTROPY

Relation between density and pressure variations: 

 

Adiabatic invariant: . 

Adiabatic equation of state:  for a given Lagrangian fluid element. 

Specific entropy:  

with : the specific heat capacity at constant volume. 

: equivalent to energy equation for adiabatic fluid. 

Conservation of mass implies the conservation of entropy .
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EQUATIONS FOR FLUID 
DYNAMICS

continuity equation (conservation of mass): 

 

Euler equation (conservation of momentum): 

 

pressure equation (conservation of energy and entropy): 
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LINEARIZATION
 with , etc. 

continuity equation: 

 

 

Euler equation: 

 

 

pressure equation: 

 

ρ = ρ0 + ρ1 |ρ1 | ≪ |ρ0 |
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∂P1

∂t
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LINEARIZATION: UNIFORM 
STATIC BACKGROUND

Assume static ( ) and uniform (constant , ) background. This implies that . 

continuity equation: 

 

 

Euler equation: 

 

 

pressure equation: 
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LINEARIZATION: UNIFORM 
STATIC BACKGROUND

Adopt oscillatory velocity perturbation  

pressure equation: 

 

      

Euler equation: 

 

:   longitudinal velocity perturbation ( ), hence  (compression). 

dot product with  yields:    

dispersion relation :   stable ( ) wave – the sound wave. 

 is both the phase and group speed (uniform and isotropic) – the speed of sound.
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⃗∇ P1

ρ0

iω ⃗v 1 = −
i ⃗k P1

ρ0
=

i ⃗k
ρ0

κP0

ω ( ⃗k ⋅ ⃗v 1) ⃗v 1 ∥ ⃗k P1 ≠ 0

−iω ⃗k ω2 ( ⃗k ⋅ ⃗v 1) = k2 κP0
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RELATIVISTIC  
SPEED OF SOUND

Maxwell-Jüttner distribution  

where  is the relativistic temperature,  is the particle Lorentz factor, 
 is the modified Bessel function of the second kind. 

mean particle energy  with  

pressure  
relativistic enthalpy density  

adiabatic index  

speed of sound  

In the limit of non-relativistic temperatures : , , , 

. 

In the limit of ultra-relativistic temperatures : , , , .

f(γ) dγ =
γ2β dγ

Θ K2(1/Θ)
exp (−

γ
Θ )

Θ = kBT/mc2 γ = (1 − β2)−1/2
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⟨γ⟩ = 3Θ + h(Θ) h(Θ) =
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5Θ
3

=
5P
3ρ

Θ ≫ 1 h(Θ) =
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