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Previous lecture

Neutron star soft X-ray transients in
guiescent state are brighter than
black hole systems, because of
additional emission from the surface
of the neutron star
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Eastern vs Western model
of the emission:

Disk black body emission
from the accretion disk

Comptonized emission
from the boundary layer

Revealed by Fourier-
frequency analysis
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Black hole mass determinations from X-ray variability

Characteristic timescales scale with black hole mass
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So, in this (simple) picture:

an AGN with 10° solar mass black hole is just a scaled up version of
a 10 solar mass X-ray binary



Not easy to notice any characteristic timescale in a lightcurve
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Characteristic frequencies in power spectra
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We do see characteristic frequencies
In power spectra
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Characteristic frequencies in power spectra

The frequencies of the Lorentzians have to represent some physical timescales
(e.g. dynamical, thermal — heating/cooling)
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Characteristic frequencies in power spectra

Characteristic frequencies scale with the inverse of the black hole mass
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Any break in the power spectrum indicates
a characteristic frequency, hence the
timescale.

The break will scale with black hole mass:
the higher the BH mass, the lower the break
frequency. In fact, the entire PSD will shift
with the changing BH mass




Scaling/shifting of the power spectrum

The problem:

Power spectra are not universal: a power spectrum from an X-ray binary

changes it’'s shape and break frequencies, even though the black hole mass
IS constant.

Axelsson et al., 2005, A&A, 438, 999



Scaling/shifting of the power spectrum

Seyfert galaxy NGC 5548 used as a
reference source, since it's mass is

quite well known: 6.8*10" M,

Assuming 10 M., BH mass in Cyg

X-1, the PSD has to be shifted by
6.83 in log(f).

Location of the break frequency
matches well the soft state spectrum
of Cyg X-1, but normalization in NGC
5548 is higher
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BH mass determination for other AGN

Power spectra of a sample of AGN
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Comparison of masses determined by the
PSD method and the spectral fitting method
— discrepancies for NLSy1 galaxies
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A modified scaling

Further research led to a modified scaling, involving also accretion rate
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High-frequency part of
PSD does NOT depend
on spectral state

Frequency x Power

Frequency x Power

A different method
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The amplitude of variability — the
integral of PSD over the marked
frequency range — scales with BH
mass.

Need to assume:

* Universal shape of power
spectrum

* The same frequency range for
all sources

* In practice: use o from
lightcurve rather than integrate
PSD

The variance method
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Using the variance method vs.

other methods

The variance method
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