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Lecture 1



The idea of this course

Present/recall the basics of radiative processes of X-rays emission relevant
to accreting compact objects (Comptonization, atomic interactions)

Present ideas and tools to compute the emission (spectra, variability)

Analyse what the observational data are telling us, and attempt to constrain
our ideas by confronting model predictions with data

Use real published research papers
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X-ray data: collection of events:
(energy; time)
(and polarization, recently)
* Spectra
* Time variability

* Spectral-temporal analysis



The idea of this course

X-ray spectra
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Fig. 8 X/vy-ray spectral states in Cyg X-1. Classical soft (red) and hard (blue)

states taken from Gierliriski et al. (1999).

Done, Gierlinski, Kubota, 2007, AARv, 15, 1-66
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Fig. 12 Range of low/hard state geometries in the truncated disc model, together
with their predicted spectra. When the disc is truncated far from the black hole,
few disc photons are intercepted by the hot flow. Thus the Comptonized spectrum
is hard, while a large fraction of disc photons are seen directly. As the disc extends
further underneath the hot flow the larger fraction of disc photons intercepted
means the spectrum becomes softer as the electron temperature is cooler, while the

disc is hotter but less distinct.
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Fig.1. a X-ray lightcurve of Cyg X-1, showing a part of the
fifth observation on FOT Nr. EE8087 (No. 1 of Table |I} energy
range=1-20keV, bin time=62.4 ms, length=1565s). b Blow-up
of the marked segment of subfigure a with a length of 3.9 s and
the original bin time of 7.8 ms, showing a typical shot structure.
Both lightcurves are plotted without error bars for reasons of
clarity.

Pottschmidt et al. 1998, A&A, 334, 201
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Correlations between spectral parameters
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Flgure 1. The R(I‘) correlation in Seyferts and X-ray binaries in the hard state. Panel (a) shows the data and models (curves in the inset); see Sections 2 and 4,

les of the ion for NGC 5548 and GX 339-4 are shown in panels (b) and (c) respectively.

© 1999 RAS, MNRAS 303, L11-L15

Zdziarski, Lubinski, Smith, 1999, MNRAS, 303, L11
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The idea of this course

Broad emission line (Fe K ) — disk reflection
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Done, Gierlinski, Kubota, 2007, AARv, 15, 1-66
Tanaka et al, 1995, Nature, 375, 659
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Power spectrum (variability) correlation between spectral and timing params
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Shaposhnikov & Titarchuk, 2006, ApJ, 643, 1098
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Variability in the AGN case:
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Czerny et al., 2001, MNRAS, 325, 865

scaling with mass
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Figure 4. The relation between the mass of the central black hole My,
determined from variability, and the mass determined on the basis of
accretion disc theory Mgil‘f : filled squares show S1 galaxies and QSOs, and
open pentagons mark NLS1. The dotted line marks the expected relation
MeE = M3 This figure is available in colour on Synergy, the online

version of MNRAS.

© 2001 RAS, MNRAS 325, 865-874
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Timing: time lags coherence
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Fourier-frequency resolved spectroscopy
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Fig. 1. The ratio of the energy spectra of Cyg X-1 in different frequency
bands to a power law model with the photon index o« = 1.8. Spectra
corresponding to 0.03-0.05 Hz and 23-32 Hz were rescaled for clarity.

M. Revnivtsev et al.: Frequency resolved spectroscopy: Cyg X-1
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Fig. 2. Dependence of the equivalent width of the fluorescent Fe line on
the frequency. For the spectral approximation the powerlaw+gaussian
line model was used (3—13keV energy band, the centroid energy and
the width of the line were frozen at the values 6.4keV and 0.1 keV
respectively).

Revnivtsev et al., 1999, A&A, 347, L23



The idea of this course

* Topics considered:
* Continuum spectra and what they say about the main radiative process

* Reprocessed component, Fe Ka line, relativistic effects, evidence for an accretion
disk

* Correlations between parameters and what they tell us about the geometry of
accretion

« X-ray variability: basic concepts, more complex approach
* Power spectra (PSD), how to understand them
« PSD, dependence on parameters, application to e.g. black hole mass estimates

* r.m.s. variability as function of energy



The idea of this course

Topics considered (cont'd):
* Time lags, interpretation, spectral variability
* Spectral-timing correlations
* Fourier-resolved spectroscopy
* Quasi-periodic oscillations
* Non-uniqueness of spectral modelling
* The case of soft X-ray excesses
* Fe Ka line in MCG-6-30-15

* The case of emission from neutron star X-ray binaries



The idea of this course

We will nhot go through all the thousands of detailed papers on X-ray binaries/AGN

Concentrate on fundamentals



X-ray emission mechanisms. Continuum emission

* Inverse-Compton process
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X-ray emission mechanisms. Atomic features

* Photoelectric absorption

* Compton scattering

* Emission/absorption lines

e Fe K, line (fluorescence; recombination)

 Recombination edges/continua




X-ray emission mechanisms. Electron scattering

Cross section

Angular dependence (Klein-Nishina effect)
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X-ray emission mechanisms. Electron scattering

Single-scattering photon energy distribution
Initial E = 100 keV, electron kT = 1 keV, KN angular distribution
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Realistic case of emitting plasma

* Electron energy distribution + the other agent
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Fig. 8 X/~-ray spectral states in Cyeg X-1. Classical soft (red) and hard (blue)

states taken from Gierliriski et al. (1999).



Realistic case of emitting plasma

* Why do we think the inverse-Compton is the process
responsible for X-ray emission in accreting black holes?

(Ruling out synchrotron and bremsstrahlung)

Topic for one of your presentations!



Realistic case: inverse Compton emission

* Spectra: principles and solutions

* S i n g Ie Scatte ri n g Compton-scattered photon energy flux

Eo=0.1 keV, electron kT =70 keV (Klein-Nishina)

100,
Single-scattering photon energy distribution
Initial E = 0.1 keV, electron kT = 70 keV, KN angular distribution )
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