

DRD1 WORK PACKAGES

Goals, status, endorsements

06.10.2025

P. Gasik (GSI/FAIR + TU Darmstadt)

Strategic R&D and Long-Term Funding

Concept of Work Packages

- Introduced to follow the ECFA Detector R&D Roadmap recommendation to "Establish long-term strategic funding programs" (GR6).
- Formally covered in the MoU, which provides an agreement framework between parties (Institutions and Relevant Funding Agencies).

Work Packages in the MoU of the DRD1 Collaboration

- Core (require signature for amendment):
 - Procedures for establishment and updates.
- Annexes (DRD1 Specific require approval but not signature for updates):
 - DRD1 procedures: General Clauses, Participation, Addition and Withdrawal of Institutions, Approvals and Reviews
 - Updated status: Institutions, Funding Agencies, Deliverables, Resources, Management.

DRD1 Gaseous Detector Technologie

DRD1 Scientific Organization

- **DRDT 1.1** Improve time and spatial resolution for gaseous detectors with long-term stability
- **DRDT 1.2** Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes
- **DRDT 1.3** Develop environmentally friendly gaseous detectors for very large areas with high-rate capability
- DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

DRDTs

1.1	1.2	1.3	1.4	Work Packages	WG1	WG2	WG3	WG4	WG5	WG6	WG7	WG
1.1	1.2	1.3	1.4					(1)				
•		•		Trackers/hodoscopes				Nare				
•	•	•		Drift chambers				soft				
•	•	•		Straw chambers				and	ctors			
•	•	•	•	Tracking TPCs			S	ations	dete			ion
•		•		Calorimetry			tudie	imul	eons		ities	minati
•	•	•		Photon detection (PID)			rial s	ics, s	gas	uction	facili	dissel
•		•		Timing detectors	gies	ons	matel	phys	cs fo	produ	test	and o
•	•	•	•	Reaction/decay TPCs	chnologi	plication	and	ector	ctroni	etector	nomu	ning
•		•		Beyond HEP	Tecl	Арр	Gas	Dete	E	Dete	Col	Trai

Work Packages at the time of the DRD1 Proposal (December 2023)

DRD1

DRD1 EXTENDED R&D PROPOSAL Development of Gaseous Detectors Technologies v1.5

.....

This document, realized in the framework of the newly established Gaseous Detector R&D Collaboration (DRDI), presents a comprehensive overview of the current state-of-the-art and the challenges related to various gaseous detector concepts and technologies. It is divided into two key sections.

The first section, titled "Executive summary", offers a broad perspective on the collaborative scientific organization, characterised by the presence of eight Working Group (WGs), which serve as the cornerstone for our forthcoming scientific endeavours. This section also contains a detailed innewatory or RRD Datas sertment into distinct Work Packages (WPs), in alguments with startigic RRD programs that funding agencies may consider supporting. Further than the contains a detailed in the CRP RRD reading software to be not the contract of the CRP RRD reading software to be not the contract the CRP RRD reading software to the contract of the CRP RRD reading software to the contract of the CRP RRD reading software to the contract of the CRP RRD reading software to the contract of the CRP RRD reading software to the contract of the CRP RRD reading software the contract

The second section, titled "Scientific Proposal and R&D Framework," delves deeply into the research work and plans. Each chapter in this section provides a detailed exploration of the activities planned by the WGs, underscoring their provided role in shaping our future scientific pursuits. This DRD1 proposal reinforces our unwavering commitment to a collaborative research program that will span the next three years.

On-line version: https://cernbox.cern.ch/s/PP7BZroM3NYS2Vh DRDI Website: https://drdl.web.cern.ch/

> Geneva, Switzerland January 9, 2024

I.2 Scientific Organization of the DRD1 Collaboration	21
I.2.1 Scientific Organization	22
I.2.1.1 Working Groups	23
I.2.1.2 Common Projects	25
1.2.1.3 Work Packages	25
I.2.2 Work Packages	26
I.2.2.1 WP1:Trackers/Hodoscopes	26
I.2.2.2 WP2: Inner and Central Tracking with PID Capability, Drift Cham-	
bers	28
I.2.2.3 WP3: Inner and Central Tracking with PID Capability, Straw and	
Drift Tube Chambers	28
I.2.2.4 WP4:Inner and Central Tracking with PID Capability, Time Pro-	
jection Chambers	29
I.2.2.5 WP5: Calorimetry	30
I.2.2.6 WP6: Photo-Detectors	32
1.2.2.7 WP7: Timing Detectors	33
I.2.2.8 WP8: TPCs as Reaction and Decay Chambers	33
1.2.2.9 WP9: Beyond HEP	35

Between establishment and endorsement

- First 9 DRD1 WPs established at the time of the DRD1 proposal approval
- 2024-2025: scientific activities organized within a WP framework
 - WP meetings
 - Workshops
- Resource planning
 - Existing resources used for the ongoing activities
 - When possible discussion with WP-FAs on future funding
 - Application for resources
- Endorsement procedure
 - Preparation of the WP endorsement procedure within WPs (coordinated withing the SCB), MB, CB and RB (most recently)
 - We are ready to start first endorsements

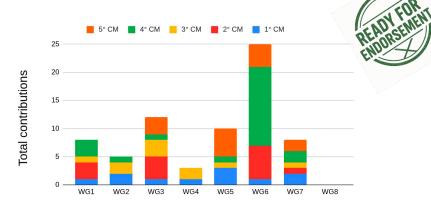
WP Scientific Activities

(based on the contributions from WPLs)

WP1

Trackers, Hodoscopes, Large Area Muon Systems

R. Farinelli, M. Iodice, G. Pugliese


WP1: Trackers, Hodoscopes, Large Area Muon Systems

INSTITUTE ID	Institute
1	INFN-BA
2	INFN-BO
3	INFN-FE
4	INFN-LNF
5	INFN-NA
6	INFN-RM2
7	INFN-RM3
8	INFN-TO
9	Kobe
10	CERN
11	U. Cambridge
12	LMU
13	ICTEA U Oviedo
14	CIEMAT
15	Wigner RCP
16	Max Plank
17	Univ of Geneva
18	Hong Kong
19	Weizmann
20	IRFU
21	USTC
22	VUB
23	IFIN-HH
24	UNSTPB
25	UniTBv
26	ISU
27	e+e- US Cluster
28	IGPC - Belgrade
29	Jefferson Lab
30	Cavendish
31	USTC
32	FLORIDA

- 8 tasks define the WP1. From the proposal up to now, an update of the task activities has occurred to include new feedback from institutes during the WP1 workshops.
 - 1st DRD1—WP1 Workshop, March 7, 2024
 - 2nd DRD1—WP1 Workshop, November 14, 2024

- 3rd DRD1—WP1 Workshop, September 25, 2025

Many WP1 contributions in DRD1 WG sessions – see also this week

TASK 1	TASK 2	TASK 3	TASK 4
New RPC and TGC Structures	New Resistive MPGD Structures	New Front-end electronics	Optimization of scalable multichannel readout systems
D1.1: Design, construction, and tests of single/multi-gap surface resistivity RPC with DLC electrodes.	D2.1: Large area (approximately 50cm x 50cm) prototypes based on resistive elements and novel MPGD architectures for high particle rates (range 100 kHz/cm² – few MHz/cm²) particle rates, 2D readout, <100m space resolution, about 10ns timing resolution, high gain (above 10-f) to ensure stability and providing a good margin for nominal working point	D3.1: Design, production and validation of a new ASIC chip for MPGDs based on new architecture for next MPGD and a technical note about the chip expected performance.	D4.1: Design, implementation, and optimization of novel Scalable Readout Systems for Gaseous Detectors
D1.2: Design, construction, and test of innovative TGC and RPC structures with current (HPL, glass) and novel resistive materials (phenolic glass, GaAs, etc.) working comfortably up to 100 kHz/ cm2	D2.2: Large area MPGD prototypes for lowlmedium rates (few-100 kHz/zm2) for large surface coverage 0(1000 m2), optimized in terms of performance (precise tracking – below 100 um and timing – few ns) and overall cost	D3.2: Integration and performance assessment of a Bi-CMOS SiGe heterojunction technology FE ASIC, with various detectors technologies, and Design of an increased performance ASIC with ultimate time resolution (< 10 ps) and possibility of local zero suppression and daisy chairing	D4.2: Development of scalable high-speed processing and interface FPGA IP blocks for the DAQ ecosystem.
D1.3: Design, construction, and test of prototypes of TGC and RPC trackers structures (made of multiple independent gas gaps and readout electrodes) suitable for 3D space-time tracking, with millimetric space resolution and up to 100 ps time resolution.	D2.3: Support and update of the modelling and simulation framework for the study of induced signals in detectors with resistive elements	D3.3: Development of a radiation hard multichannel TDC board and integration in a detector setup	D4.3: Development of scalable DAQ software for high-speed data transport.

TASK 5	TASK 6	TASK 7	TASK 8
Eco-friendly gases	Manufacturing	Longevity on large detector areas	New Detector Structures
D5.1 Test and characterization of RPCs operated with low-GWP (HFO) and new eco-gas mixtures.	D6.1: DLC production with C.I.D (CERN-INFN DLC machine)	D7.1 Studying the impact of integrated current and unknown gas-induced ageing effect on the long-term performance of the detector. Studies with eco-gas mixtures.	D8.1: Design, construction, and test of prototypes (area of 30x10 cm²) composed of Resistive Cylindrical Chamber (RCC), with different resistive materials and read-out electrodes.
D5.2 Compatibility of the new eco-gases with gas system components	D6.2: Industrial co-production of MPGD (micro-RWELL, Micromegas) and RPC	D7.2 Development and test of gaseous detectors operated with new recuperation and recirculation systems.	D8.2: Hybridization of an RCC with a drift tube, and performance study
D5.3 search for CF4 alternatives	D6.3: MWPC- and GEM-based chamber production using industry-standard printed circuit boards with option of integrated electronics.	D7.3: Characterization of detectors constructed from industry-standard production methods in terms of ageing revironmental robustness (humidity, temperature cycling), mechanical stability (vibration, stress load) and gamma irradiation.	D8.3: Construction and test of a curved MPGD prototypes with cylindrical and tubular shapes

New RPC and TGC structures

- INFN-BA: Timing with RPC-based (HPL or glasses)
- Cavendish: RPC-based (HPL or glasses) tracker for ANUBIS experiment
- INFN-LNF: sRPC high-rate
- ROMA Tor Vergata: RPC with Gallium Arsenide electrodes
- MPP: large size RPC and Multigap
- Weizmann: TGC

Status of the art of the R&D at INFN Bari

A double-gap glass RPC (1.4 mm gas gap and 1.1 mm glass electrode thickness) was tested with a new readout electronics based on FATIC2 chip adapted for RPC signals TDC time resolution ~ 100 ps

new electronics was performed at INFN RPC Lab with low charge thresholds (DRD1 WP7B)

- > Plan: fine tune the electronics integration and perform dedicated performance studies with cosmics muons. The detector will be operated with the CMS standard gas mixture and few ecofriendly mixture candidates
- candidates

Improved timing RPC

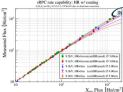
Preliminary calibration (S-Curves and threshold scans) of the

For 2025, requested to INFN: a CAEN PicoTDC for timing measurements and an additional MFC to test the detectors with 4 primaries gaseous mixtures > ecofriendly

WP1 T1 STATUS AND PLANS: D1.2

- · Overview of project:
 - · instrument ceiling of ATLAS cavern with RPC-based tracker (~2500 m2)
 - → unique sensitivity to long-lived particles at EW scale
- · State of the art:
 - constructed prototype using ATLAS BIS7 technology, looking at cost-effectiveness (focus on gas gap materials)
- Plans for 2024:
 - · survey of HPL manufacturers / low resistivity
- · Milestone:
 - pre-production construction end of 2025
- Deliverable:
- Resources are confirmed as per table

G BRANDT 🚟 CAVENDISH LABORATORY



A measurement of the rate capability (defined as the radiation flux corresponding to an efficiency drop of 20%) of a preliminary high-rate layout (introducing two conductive lines for fast current evacuation) has been performed by irradiating the detector with a 5.9 keV X-ray gun with a spot size comparable with the pitch of the conductive grid realized on the DLC (1.6 GOhm/sq). sRPC rate capability: HR w/ coati

The implementation of conductive lines on the DLC introduces some instability at higher voltage, sensibly reducing the plateau width wirt the haceline version. New lavoute under evaluation

Rate capability of ~1 kHz/cm2 with X-ray

TGC production and testing

- Decades long experience at WIS developing producing and testing TGC chambers for ATLAS
- · Joint effort with Japanese groups from the

Cosmic ray test of EIL4 triplet with new ATLAS readout system

New RPC and TGC structures.

New Resistive MPGD Structures

- INFN-Bologna, INFN-Ferrara, INFN-LNF: u-RWELL Tracking detectors for muon systems at future colliders
- INFN-LNF: u-RWELL for high rates (mostly related to R&D for LHCb)
- INFN-Roma2: u-RWELL detectors for the EPIC tracking at EIC (2D readout)
- IRFU-CEA-Saclay: MPGD Trackers
- Weizmann: RPWELL and RWELL
- CERN: New resistive MPGD structures and 2D readout
- LMU: Large area Micromegas (floating strips and resistive)
- INFN-Roma3 and INFN Napoli: Micromegas for large area muon systems and High/Low rates applications
- IFIN-HH: Simulation
- Jefferson Lab: Thin-gap MPGD Tracker for ePIC Detector @ the EIC; Large MPGD Trackers for Experiments @ JLab

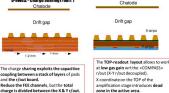
RPWELL and RWELL

methods and challenges

- · Production of (large area) detectors with precise and cost effective techniques
 - · standard PCB (FR4, drill, etching)
- Uniform response¹
- · Resistive materials
- · Semi conductive glass
- · Developing novel composite materials
- · Developing assembly methods for large area towards industrialization1
- Integration with SRS-VMM3a electronics

1) Zavazieva, D., et al. "Towards a large-area RPWELL detector: design optimization and performance." JINST (2023): P08001

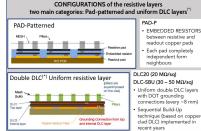
Tested @ TR2023


Drift gap

Operation at lower gas gain wrt the

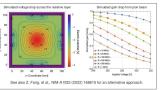
decoupled)

Tested @ TB2022


Tested @ TB2023

u-RWELL TOP r/out

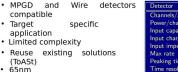
The Small Size Prototypes


Several Prototypes built and tested with a common readout layout but different spark protection systems

Readout PAD anodic plane (common to all prototypes) 4.8 x 4.8 cm² active region 768 pads, 0.8 x 2.8 mm² each 48 pads - 1 mm pitch ("x") 16 pads - 3 mm pitch ("y") Signals routed to six

T2: New resistive MPGD structures and 2D readout optimization

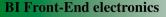
In addition to the signal indication simulations for different resistive MPGDs, topics such as thermal noise coming from resistive elements and rate-capability studies can be explored for different technologies. Possibly, the effect of resistive materials in guenching discharges in current hydrodynamic models could be implemented.



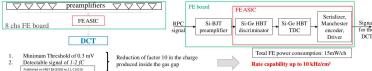
WP1 Mini-Workshop (CERN GDD)

- New RPC and TGC structures
- New Resistive MPGD Structures
- New Front-End Electronics
 - INFN TO, INFN BO, INFN FE: TIGER integration with resistive MPGD
 - INFN TO: TORA development for MPGD and wire-based detector
 - CERN, IFIN-HH, UNSTPB, UniTBv: FEE for SRS and simulation
 - CEA: Design of SALSA Chip for MPGD
 - INFN RM2, HKU: ASIC TDC-based production for RPC
 - CIEMAT, ICTEA/U.OVIEDO: ASIC TDC-based integration with new detector
 - MPP: FEE for high rate and fast recovery baseline
 - IRFU: SALSA
 - Weizmann: RPWELL and RWELL tracking elements with SRS-VMM3a.

Torino Readout (for) AMBER ASIC


Two step features design v1, v2

18/03/2025


Will depend on the FE optimisation results

64	64	
≤ 25	≤10	mW
	20-100	pF
1-100	1-1000	fC
≤50 Ω	tbd	
	≤0.18	MHz
150-500	25-150	ns
1-2	≤1	ns
	10	bits
	2	mV/f0
500-1000		
1000-		
3000	3000	
	0-15	fC
200	200	MHz
	$\begin{array}{c} \leq 25 \\ \leq 550 \\ 1-100 \\ \leq 50 \Omega \\ \leq 0.5 \\ 150-500 \\ 1-2 \\ 8 \\ 10-20 \\ 500-1000 \\ 1000-3000 \\ tbd \end{array}$	$\begin{array}{c ccccc} \leq 28 & \leq 10 \\ \leq 580 & 20\cdot100 \\ 1\cdot100 & 1\cdot1000 \\ \leq 50 & \Omega & total \\ \leq 0.8 & \leq 0.18 \\ 150\cdot500 & 25\cdot150 \\ 1\cdot2 & \leq 1 \\ 8 & 10 \\ 10\cdot0\cdot200 & 2 \\ 500\cdot1000 \\ 1000 & 3000 \\ total & 0\cdot15 \\ \end{array}$

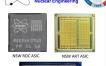
IFD 2025 | New LaMM and ToRA ASIC @ AMBER 1

Mixed technology of Silicon B/T for the discrete component preamplifier and a full custom ASIC in IHP BiCMOS technology

Strategy behind the integration of the TDC directly within the FE ASIC:

- · Less sensibility to the various sources of noise, implying better overall performance
- "Easier" to achieve the required time resolution (100ps) for the second coordinate measurement with 1cm space resolution
- · Reduction in the complexity of the connections with an external system
- · No complex cables calibration are required in order to achieve the desired space resolution (1 cm) for the second coordinate measurement

3/7/2024


DRD1 - Roma Tor Vergata and HKU

44

- New RPC and TGC structures
- New Resistive MPGD Structures
- New Front-End Electronics
- Optimization of Scalable Readout System
 - INFN FE: development new FPGA for TIGER
 - CERN, IFIN-HH, UNSTPB, UniTBv: upgrade SRS
 - CIEMAT, ICTEA/U.OVIEDO: development new FPGA for time digitization

RD51 SRS

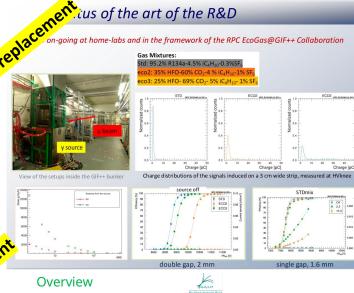
Time digitization readout electronics

CIEMAT has recently developed an FPGA-based readout board

- Performs time digitization of up to 228 channels
- At present, 800 ps resolution
- Built around Microsemi PolarFire PFGA
- IpGBT CERN transceiver (10.24 Gbps).
- And 2 VTRX+: up to 6 high speed lanes fully available (61,44 Gbps)
- Radiation tolerant

O(200) boards are being produced for its HL-LHC Upgrade and will need to operate to high standard of reliability (CMS Muon DT upgrade)

Modifications of present board to accommodate to future detector designs can be envisioned and will be studied.


Interconnection with additional electronics or modification of the board could also provide dE/dx capability building on the TDC on FPGA already implemented.

Goal: understand potential detectors that could benefit from this development and study the best way of adapting/redesigning if needed

- New RPC and TGC structures.
- New Resistive MPGD Structures
- New Front-End Electronics
- Optimization of Scalable Readout System
- Eco-friendly gases
 - Cavendish: eco-gas for RPC
 - INFN-Ba, INFN-LNF, INFN-RM2, INFN-TO: eco-gas for RPC, testbeam, aging
 - U. Florida: Gas gain, timing, F- production, CF4 alternative
 - IGPC: CF4 alternative, simulation
 - CERN: eco-gas for RPC, gas chromatograph and mass spectrometer
 - U. Michigan: gas mixture system
 - MPP: eco-gas for RPC

of substitutes for the high-GWP molecules in the standard gas mixture, $C_2H_2F_4$ and SF_6 , suitable for periments in high-radiation background environments.

rent focus: SF_6 replacement with $C_3H_2ClF_3$ (GWP = 1) \rightarrow Promising results from : G. Proto et

Studying RPC performance and longevity at the GIF++ on 1 mm RPC small-size prototypes (produced at MPI)

Two beam tests campaigns during 2024, focusing on STD-like and C2H2F4/CG

Overview of the projects: eco-gas studies

1. MIX1: 94.7%C2H2F4/4.7%i-C4H10/0.6%C3H2ClF3 "STD-like" : Directly (mixture and used t 2. MIX2:94.3%C2H2F4/4.7%i-C4H10/1%C3H2ClF3

MIX3: 63.3%C₂H₂F₄/30%CO₂/4.7%i-C₄H₁₀/2%C₃H₂ClF

4. MIX4: 53.3%C2H2F4/40%CO2/4.7%i-C4H10/2%C3H2ClF3

Optimization of t concentration

R&D on new eco-friendly gas mixtures for RPC detectors

- Characterisation of RPC performance in laboratory Ageing campaign and long-term performance studies

Studies on eco-gas properties and mixture quality

- Studies on new eco-gas properties
- Cross-section, chemical reaction, gas degradation, etc.
- Gas chromatography, Mass spectrometer, Ion Selective Electrode, UV-visible spectroscopy

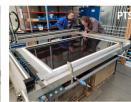
Mass Flow Controllers regulation valves etc.

- Ontimisation of gas system components and their validation with new gases
- Safety and environmental aspects
- Flammability studies. PFAS degradation, etc.

Task 5.1

Tasks 5.1 and 5.2

- New RPC and TGC structures.
- New Resistive MPGD Structures
- New Front-Fnd Flectronics
- Optimization of Scalable Readout System
- Eco-friendly gases
- Manufacturing
 - INFN-LNF, INFN-RM3, INFN-NA: DLC sputtering
 - INFN-LNF, INFN-FE, INFN-BO: µRWELL manufacturing to industry
 - INFN-Roma3, INFN-Napoli: MM manufacturing to industry
 - INFN-Roma2: Optimization of RPC mass production for Phase2
 - MPP: German industrial partners for RPC gas gap production. RPC assembly table and test stand. sMDT tube assembly line
 - Wigner RCP: Lightweight MWPC technologies
 - Univ. Michigan: squared drift tubes


- > Production of thin-gap RPCs established at three places:
- MPI for Physics,
- Mirion technologies in Munich,
- > PTS Maschinenbau in Dillingen.

> Timeline

- 2022: Optimization of the production steps.
- ≥ 2023: Qualification of the production with small-size (50x40 cm²) prototypes.
- > 2024: Production of full-size prototypes and start of an aging test as final qualification step.

Micromegas Production at ELTOS

technology of mesh bulk manufacturing to a PCB company. It's important to note that bulk processing is not a standard practice within the

We are currently making efforts to transfer the

Development (after exposure

While we've seen promising progress, further improvements are still necessary.

Our goal is to launch a new test-production campaign in 2024

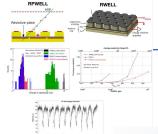
Technical features

- Flexible substrates up to 1.7m×0.6m
- Rigid substrates up to 0.2m×0.6m

Five cooled target holders, arranged as two pairs face to face and one or the front, equipped with five shutters. CID allows to sputter or co-sputter different materials, to create a

coating layer by layer or an adjustable gradient in the coating.

The graphite target The three external cathodes


Machine confunded by CERN and INFN. R&D led by INFN LNI

- New RPC and TGC structures.
- New Resistive MPGD Structures
- New Front-Fnd Flectronics
- Optimization of Scalable Readout System
- Eco-friendly gases
- Manufacturing
- Longevity on large detector area
 - INFN-BA, INFN-LNF, INFN-RM2, INFN-TO: RPC eco gas ageing test campaign
 - Weizmann: MPGD characterization of discharge rate and intensity
 - IGPC: Characterization of electrode materials from longevity studies and devising the

standardized investigation protocol

Discharges RPWELL and RWELL

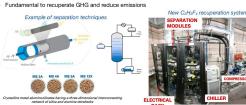
- Characterization of discharge rate and intensity1
- Discharge effect² on detector operation and readout
- Characterization of resistive materials3 and development of new composite materials

Evaluation of the impact of the integrated current and ECO2-induced ageing effect on RPCs, on a long-term scale:

· ageing test campaign at CERN GIF++ on RPCs characterized by different layouts (already on-going @ABS 2.2, strong synergy with WP1-T5, D5.1)

systematic performance studies, at (spring/summer 2024, schedule yet to be approved, strong synergy with WP1-T5,

 Systematic resistivity (with the Argon method)



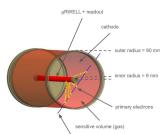
Status of the art: gas recuperation systems

Task 7.2: Development and test of gaseous detectors operated with new recuperation and recirculation systems.

Gas recuperation systems

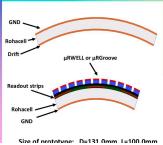
- Several gas recuperation systems developed in the last ~15 years
- Different separation principles depending on the gas mixture and detector
- No available plants in industry
- Gas mixtures are very specific for particle detectors, not used in industry

- New RPC and TGC structures
- New Resistive MPGD Structures
- New Front-End Electronics
- Optimization of Scalable Readout System
- Eco-friendly gases
- Manufacturing
- Longevity on large detector area
- New Detector Structures
 - INFN FE, INFN LNF: Cylindrical μRWELL
 - INFN FE: Tubular μRWELL
 - INFN RM2, MPP, UGEV, HKU: Resistive Cylindrical Chamber
 - USTC: Cylindrical uRGroove


µRtubes in a nutshell

The basic idea is to develop a **tubular MPGD** working as a radial TPC: the readout on the inner cylinder and the cathode on the outer one.

The signal is **amplified** by a µRWELL as a single stage amplification and the readout is instrumented with strips parallel to the axis.


The main concept of the project is based on the convergent electrical field lines which introduce two important points:

- it reduces the transverse diffusion of the electrons
- it minimizes the number of channels with respect to the sensitive volume

Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Chambers and Related Development of Residute Cylindrical Chambers, E. Cardanell, XIV Workshop on Residute Plate Cham

Resistive Cylindia.

WP2

Drift chambers

WP2: Drift chambers

	Task	Performance Goal
Started	Development of front-end ASIC for cluster counting	Design/construction/test of a prototype of the frontend ASIC for cluster counting (with High bandwidth, High gain, Low power consumption Low mass)
Started	Development of a scalable multichannel DAQ board	Working prototype of a scalable multichanne DAQ board (with High sampling rate, Dead-time- less, DSP and filtering ability, Event time stamping, for Track triggering)
Advanced	Mechanics: new wiring procedures and new endplate concepts	Conceptual designs of novel wiring procedures (feed-through-less wiring procedures) and ful design of innovative concepts of more transparent endplate (< 5% X ₀).
be restarted	Increase rate capability and granularity	Measurements of performance on prototypes of drift cells at different granularities (smaller cel- size and shorter drift time) and with different field configurations (higher field-to-sense ratio).
Started	Consolidation of new wire materials and wire metal coating	Evaluation of the electrostatic stability of wires with High yield strength, Low mass, low Z, High conductivity. Study of aging effects. Evaluation of existing or a sputtering facility for metal coating of carbon wires.
To be started	Study ageing phenomena for new wire types	Tests of prototypes built with new wire types a beams and irradiation facilities. Measurement of performance on total integrated charge and establish charge collection limits.
Not started	Optimization of gas mixing, recuperation, purification and recirculation systems	Measurement of the performance of hydrocarbon-free gas mixtures with High quenching power, Low-Z, High radiation length Design of a recirculating system.

October 2024

10 Oct
WP2 -Drift Chambers meeting

July 2024

18 Jul WP2 -Drift Chambers meeting

May 2024

17 May WP2 -Drift Chambers meeting

April 2024

10 Apr WP2 -Drift Chambers meeting

March 2024

01 Mar WP2 -Drift Chambers meeting

28 Mar WP2 -Drift Chambers meeting

March 2025

- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie(IJCLab) not in the MoU
- INFN, Bari (INFN-BA)
- INFN, Lecce (INFN-LE)
- INFN, Rome (INFN-RM)
- US cluster (US):
 - U. Mass Amherst, U. Michigan, Irvine, Tufts U., BNL, FIT, U. Florida, U. Wisconsin
- Nankai University (Nankai U.) not in the MoU
- Tsinghua University (Tsinghua U.)
- Institute of High Energy Physics, Chinese Academy of Sciences (IHEP-CAS)
- Wuhan University (Wuhan U.)
- · Jilin University (Jilin U.)
- University of Science and Technology of China (USTC)
- Institute of Modern Physics, Chinese Academy of Sciences (IMP-CAS)
- Bose Institute (Bose)

Challenges

Electrostatic stability condition:
$$\frac{\lambda^2}{4\pi\varepsilon}\frac{L^2}{w^2} < wire \ tension < \it YTS\cdot\pi r_w^2$$

λ = linear charge density (gas gain)
L = wire length, r_w wire radius, w = drift cell width
YTS = wire material yield strength

The proposed drift chambers for FCC-ee and CEPC have lengths L = 4 m and plan to exploit the cluster counting technique, which requires gas gains $\sim 5 \times 10^5$.

This poses serious constraints on the drift cell width (w) and on the wire material (YTS).

⇒ new wire material studies

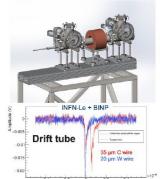
Non-flammable gas / recirculating gas systems

Safety requirements (ATEX) demands stringent limitations on flammable gases; Continuous increase of **noble gases cost**

⇒ gas studies

Data throughput

Large number of channels, high signal sampling rate, long drift times (slow drift velocity), required for cluster counting, and high physics trigger rate (Z_0 -pole at FCC-ee) imply data transfer rates in excess of ~ 1 TB/s


⇒ on-line real time data reduction algorithms

New wiring systems for high granularities / / new end-plates / new materials

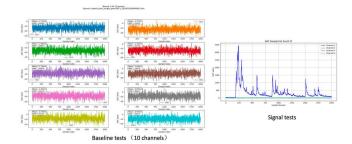
reduction of the material budget

Assessment of the **Cluster Counting/Timing technique** with real data and simulation

- Development of a front-end ASIC for cluster counting
- Development of a scalable multichannel DAQ board

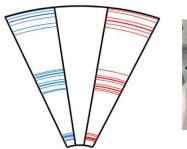
10G LIDE Lie

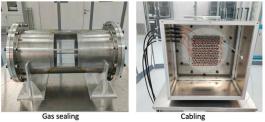
Electronics for the ADC and Readout board CEPC DCH prototype


- 10ch ADC board (AD9695)
- · Sampling rate: 1.3 Gsps@ 14 bit
- Xilinx Ultrascale+ ZU15EG Readout Board

10-Ch AD9695

Preliminary tests of the readout electronics




- Development of a front-end ASIC for cluster counting
- Development of a scalable multichannel DAQ board
- Mechanics: new wiring procedures and new endplate concepts

IDEA DC prototype

Prototype wiring proposal

- Finished the prototype construction, cabling and HV training
- Gas mixture: He/iC₄H₁₀ =90/10
- · Commissioning and preliminary testing with cosmic-ray are ongoing

Vertical wiring technology is adopted

• Feedthroughs are employed for positioning and fixing wires

reeathroughs

Wire tests with standard protocol

Tests started in a small clean room at INFN Bari:

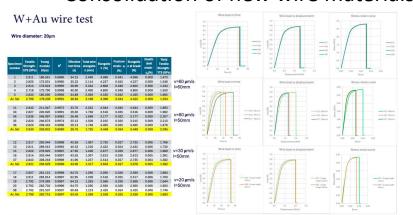
- Tungsten coated with gold
- Molibden coated with gold
- Carbon monofilament

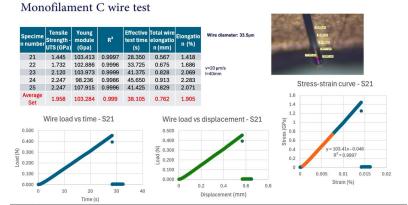
Setup

- · 3 axis picometer motor (30nm step)
- Digital dynamometer (acc. 0.001N)

Scope: Tensile Strength and Young's modulus for High-Modulus

(>21 GPa) Single-Filament Materials (gage length > 2000*wire


 Summary: The filaments are center-line mounted on special slotted tabs. The tabs are gripped so that the test specimen is aligned axially in the jaws of a constant-speed movablecrosshead test machine. The filaments are then stressed to failure


Standard ASTM D 3379 - 75

- Development of a front-end ASIC for cluster counting
- Development of a scalable multichannel DAQ board
- Mechanics: new wiring procedures and new endplate concepts

· Consolidation of new wire materials and wire metal coating

- Development of a front-end ASIC for cluster counting
- Development of a scalable multichannel DAQ board
- Mechanics: new wiring procedures and new endplate concepts
- Increase rate capability and granularity
- Consolidation of new wire materials and wire metal coating
- Study ageing phenomena for new wire types
- Optimisation of gas mixing, purification, and recirculation systems

WP3

Straw and Drift Tube Technologies

Junjie Zhu, Oliver Kortner, <u>Peter Wintz</u>, Daniel Bick, Roberto Petti, Katerina Kuznetsova, Temur Enik

WP3: Straw and Drift Tube Technologies

	Contributions						
Institute	T1	T2	T3	T4	T5	T6	T7
GSI					Х		Х
GTU	X	Х	Х		Х		
IFIN-HH			Х	Х	Х		Х
IITG	X	Х	Х	Х	Χ		Х
IITK				Х	X		
INFN-TO				Х			
INP-Almaty	X	Х	Х	Х	Х	Х	Х
MPP	X	Х	Х	Х	Х		
NISER	X		Х				
RU Bochum			Х	Х	X		Х
U Hamburg	X	X	Х			Х	
U Punjab	X		Х	Х			
U South Carolina		X	Х	Х	Х		Х
U Duke		Х					
U Delhi	X	Х		X			
BNL				Х			
FIT				Х			
JLab				Х			
U Mass. Amherst				Х			
U Michigan	X	Х	Х	Х			
UC Irvine				Х			
U Wisconsin				Х			
Tufts University	X	Х	X				

2024 committments, updates for institutes which left. US cluster institutes marked in blue

Project	Title	Project Leader
WP3-FCC (WP3A)	Straw chamber and drift tube technologies for applications at FCC-ee/hh	Oliver Kortner Junjie Zhu
WP3-HAD (WP3B)	Straw chamber technologies for hadron physics applications	Peter Wintz
WP3-DM (WP3C)	Large area straw detector for Dark Sector applications	Daniel Bick
WP3-NEU (WP3D)	Straw chamber technologies for neutrino physics applications	Roberto Petti
WP3-MPT (WP3E)	Optimization of straw materials and production technologies	Temur Enik
WP3-RO (WP3F)	Optimization of electronic readout	Katerina Kuznetsova

Task	Performance Goal
Optimize straw materials and straw production technologies	Development of thin straw film tube walls (2030 µm and below) with robust metallization, low cross-talk and resistance to ageing effects
Develop and improve application-specific straw tube designs	Small diameter straws (5 mm) with fast timing (< 100 ns). Ultra-thin straws with tube walls < 20 μm (X/X0 < 0.02%). Ultra-long straws with thin walls (~ 30 μm) and 4 m length
Optimize the detector mechanical system	Development of self-supporting straw modules and/or control of material relaxation with precise straw position alignment
Optimize the front-end electronics (ASIC) and read-out system	Leading- and trailing-edge time readout and/or charge readout down to sub-ns precision
Enhance the tracker measurement information	3D/4D tracking with high-resolution, PID via the particle-specific dE/dx information. The goals are spatial straw resolutions of 150 µm or better, time t0 extraction with O(ns) resolution and dE/dx resolution better than 10%
Enhance the detector longevity	Ageing resistance of O(1 C/cm) for thin-wall straws
Optimize the online / offline software	Develop SW and methods for straw tube and electronics simulations, straw calibration, pattern recognition, tracking, and PID and

- Presentations in WGs
- Topical Workshops
- Beam tests
- Detector School

Mini-Workshop on Straw Tracker R&D for a Future Electron-Positron Higgs Factory

- Oct 14, 2024, 9:00 AM → Oct 15, 2024, 4:30 PM US/Eastern
- 335 West Hall (University of Michigan)

Straw and drift tube technologies for FCC-ee/hh

- Straw detector implementation in FCC-ee simulation framework
- Optimization of straw parameters and detector layout with $X/X_0 \sim 1\%$
- Cluster counting (dN/dx) readout for PID including simulation
- Drift tubes (sMDT) for FCC-hh

Straw technologies for hadron physics applications

- Minimal material budget by self-supporting straw modules
- 4D+PID central tracker, 4D by t0 extraction
- PID by dE/dx (p/K/ π < 1 GeV/c) using TDC time-over-threshold
- Application: PANDA@FAIR

Large area straw detector for Dark Sector applications

- Straw tubes up to 5m length
- Large detector planes (~50 m²) in vacuum
- Novel methods for straw alignment and relaxation compensation
- Application: SHiP@CERN

A straw tracker proposal

Slide by Juniie Zhu

- Propose to build a thin-wall straw inner tracker for FCC-ee
- Benefits of straws: low material budget, a single unit for each straw, radial symmetric electric field, triggering, PID with dN/dX, straws with different radii can be used in different regions, low wire density, simpler endplate structure
- Challenges: thin straw production, long thin straw assembly, mechanical support. PID with dN/dX, ...
- Straw tracker concept and performance studies
- Implemented a geometry inside the FCC-ee simulation framework, ~1.2% Xo for 100 layers of straws with a wall thickness of 12-20 um
- Implementation of the detector geometry inside GEANT
- · Momentum resolution studies with a python fitting program with MS effects included

An example layout:

O(60k) straws, coverage: R between 0.3-1.8 m and a length of 4-5 m Diameters 1.0 - 1.5 cm, single hit resolution: ~100 μm 10 superlayers (each 10 layers), Stereo angle: 2-5 degrees

June 20th, 2025

P. Wintz - WP3 Renor

GEANT simulation 0.002 Straw tracker

These resolutions are calculated based on diassumptions and should be viewed with a gram fund

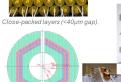
IDEA plot taken from De Filippis's talk

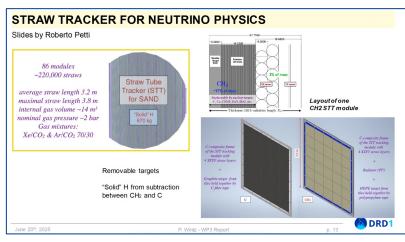
at the Michigan straw tracker workshop

Straw Chamber Technologies for Hadron Physics

Slide by Peter

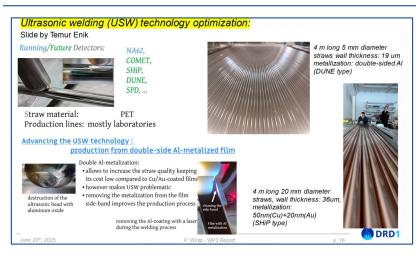
4D+PID Central Straw Tracker in 2T solenoidal B-field


- 19 axial + 8 stereo-layers (±3°)
- 27µm Al-mylar film, 10mm diameter, 1400mm length, Ar/CO₂ drift gas (2 bar)
- Minimal number of straw components and minimized material thickness
- Low material budget
- Close-packed straw layers, self-supporting by gas overpressure (ΣF=32kN)
- X/X0 ~ 1.3% total and 0.04% per straw layer
- Drift time and time-over-threshold for PID using TDC time readout
- resolution: σ(r) < 150μm, σ(z) ~ 2-3mm; Δp/p ~ 1-2%
- p/K/π separation for momentum < 1GeV/c
- Particle rates <1 MHz/straw, <10 kHz/cm²


Straw layout (cross-view).

stereo lavers in red/blue DRD1

P. Wintz - WP3 Repor



STRAW TRACKER FOR NEUTRINO PHYSICS Slides by Roberto Petti Self-supporting tracking module with 4 XXYY straw layers Self-centering of wires with precision spacers Low-power readout boards integrated into 6-fiber frame (64 channels each) VMMQs for initial data Custom ASIC with dual sub channels for time and charge measurements Self-cooling design

Straw technologies for neutrino physics applications

- ~ 220k straws, 5mm diameter, 19µm wall, up to ~4m length
- 3D tracker with transition radiation detection (gas: Xe/CO₂ & Ar/CO₂)
- "Solid hydrogen target" concept in neutrino physics application
- Flexible modules: target/radiator and "transparent" straw planes
- Application: SAND@DUNE

Optimization of electronic readout:

Slide by Katerina Kuznetsova

Readout for trackers with Particle Identification option: simultaneous readout of time-at-threshold (tracking) and signal charge (PID)

- two shaping branches (fast for tracking + slow for charge)
- single branch with compromising parameters
- · MPGD and Wire detectors compatible
- · Target specific application
- · Limited complexity
- · Reuse existing solutions (ToASt)
- 65nm

Final ToRA v1 parameters

Channels	64		
Size	4.3×2.6	mm^2	
Power	640	mW	
Supply voltage	1.2	V	
Gain	2,6,9,12	mV/fC	
Peaking time	25,50,150,250	ns	
Main clock	200	MHz	
Time resolution	1.44	ns	r.m.s.
T	1 - 41		

Will depend on the FE optimization results

P. Wintz - WP3 Repor

ToRA v1: 2025

single branch, prototype production submitted 5/25, delivery expected 9/25

Maksim Alexeev (Torino) Torino Readout (for) AMBER ASIC

<50 Ω

500-1000

1000-2000

200

ToRA v2: 2026-28 configurable double branch

Detector

Max rate

Peaking time

ENC @10 pF

ENC @150 pF

ENC @60 pF

Threshold range

Time resolution

Charge resolution

Channels/ASIC

Power/channel

Input capacitance Input charge

Input impedance

Straw

20-100

< 0.18

3000

0-15

mW

MHz

mV/f0

Straw technologies for neutrino physics applications

- ~ 220k straws. 5mm diameter, 19µm wall, up to ~4m length
- 3D tracker with transition radiation detection (gas: Xe/CO₂ & Ar/CO₂)
- "Solid hydrogen target" concept in neutrino physics application
- Flexible modules: target/radiator and "transparent" straw planes
- Application: SAND@DUNE

Optimization of straw materials, production technologies

- New production technologies, e.g. ultrasonic welding of PET-film
- Standardization of straw components and production technologies
- Broad range of straw parameters (diameter, wall, length, coating ..)
- Quality assurance methods for O(100k) straw productions

Optimization of electronic readout

- Developments incl. simulation and ASIC designs
- Broad application range for high/low rates, fast/medium timing

Straw and drift tube technologies for FCC-ee/hh

- Straw detector implementation in FCC-ee simulation framework
- Optimization of straw parameters and detector layout with X/X₀~1%
- Cluster counting (dN/dx) readout for PID including simulation
- Drift tubes (sMDT) for FCC-hh

Straw technologies for hadron physics applications

- Minimal material budget by self-supporting straw modules
- 4D+PID central tracker, 4D by t0 extraction
- PID by dE/dx (p/K/ π < 1 GeV/c) using TDC time-over-threshold
- Application: PANDA@FAIR

Large area straw detector for Dark Sector applications

- Straw tubes up to 5m length
- Large detector planes (~50 m²) in vacuum
- Novel methods for straw alignment and relaxation compensation
- Application: SHiP@CERN

- Straw technologies for neutrino physics applications

- ~ 220k straws, 5mm diameter, 19μm wall, up to ~4m length
- 3D tracker with transition radiation detection (gas: Xe/CO₂ & Ar/CO₂)
- "Solid hydrogen target" concept in neutrino physics application
- Flexible modules: target/radiator and "transparent" straw planes
- Application: SAND@DUNE

Optimization of straw materials, production technologies

- New production technologies, e.g. ultrasonic welding of PET-film
- Standardization of straw components and production technologies
- Broad range of straw parameters (diameter, wall, length, coating ..)
- Quality assurance methods for O(100k) straw productions

Optimization of electronic readout

- Developments incl. simulation and ASIC designs
- Broad application range for high/low rates, fast/medium timing

WP4

Tracking TPCs

F. García, J. Kaminski

WP4: Tracking TPCs

Task	Performance Goal
IBF reduction	Further developments and studies aiming to reductions of gain×IBF < 15
PixelTPC development	Study in more detail various approaches to the pad plane configuration and its amplification structures optimized with respect to resolution and the IBF
Optimization of the amplification stage and its mechanical structure, and development of low X/X0 field cages (FC)	Implementing new ideas already developed and further investigate the increase of the homogeneity of the field cage (FC) and to lower the material budget of its components
FEE for TPCs	To develop an SRS-based readout system for smaller scale experiments and test setups with different types of TPCs. Also, the development of low power electronics and Front-End Electronics cooling
Gas mixture	Studies of new gases suitable for different TPC applications. Particular attention will be given to a low environmental impact (e.g. low GWP) and the effect of varying the gas pressure

We are not ready yet for the endorsement.
 Preparations are ongoing to reach that stage.

There is a wide range of activities that reach a critical mass to pursue the endorsement by the collaboration.

 Most of the groups are concentrating their efforts in high-granularity pixel readout for different applications.

WP4: ongoing activities

Leaders and Groups	Activities and Sites	
E. Oliveri - GDD	 TimePix4 test with a triple GEM detector TimePix4 test with a μRWELL 	
A. Obertelli/P. Gasik – GSI/TUD	GEM+MMG TPC with VMM3a base readout: HYDRA pion tracker □ GEM+MMG TPC with VMM3a base readout: HYDRA pion tracker □ SET ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
B. Voss - GSI	 Tracking using VMM3a base readout Integration of TimePix3 Integration of TimePix3 for tracking for MIXE 	
M. Heiss - PSI	 Test with GEM-TPC for tracking for MIXE experiment Integration of pixel readout with VMM3a Integration of TimePix3 for tracking for MIXE 	
H. Ferreira – IEAP/CTU	 Tests of Cylindrical GEM-TPC with VMM3a Test of Cylindrical GEM-TPC with TimePix3 Test of Cylindrical GEM-TPC with TimePix4 	
F. Garcia - HIP	 Tracking using VMM3a base readout Integration of TimePix3 for tracking to a GEM-TPC Integration of the TimePix4 for tracking to a GEM-TPC Integration of TimePix3 for tracking for MIXE 	

WP5

Gaseous calorimeters

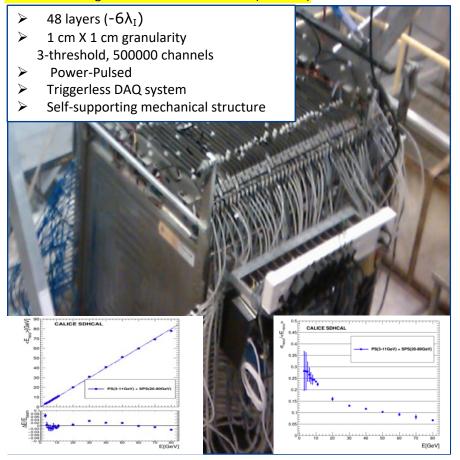
I. Laktineh

WP5: Gaseous Calorimeters

Task	Performance Goal		
Conception,	Large and thin gaseous detectors are needed for future		
construction	calorimeters. However, one needs to ensure that the		
and	response of such detectors is uniform in terms of		
characterizatio	efficiency and particle cluster size. The two previous are		
n of large	used to reconstruct the energy when binary or multi-		
sampling	threshold readout is used. The gaseous detectors need		
elements for	thus to be conceived and built having in mind such a		
calorimeters	uniformity. To achieve such a uniformity, precise		
	mechanical structure should be adopted. In addition, the		
	gas distribution system of the detectors should enable a		
	uniform renewal of the gas inside the detectors.		
Timing	Recent studies have shown that time information could		
performance	help to separate close-by showers but also to evaluate		
of gaseous	the contribution of delayed neutrons. Some gaseous		
detectors for	detectors can provide <mark>excellent time information</mark>		
calorimeters	However a good uniformity of time performance is		
	needed to properly exploit such an interesting feature		
Readout	Development of novel Scalable Readout Systems for		
electronics for	Gaseous Detectors. Development of new FPGA-based		
calorimeter	readout system that matches the data throughput of the		
gaseous	electronics		
detectors			
	 		

Conception of small detectors of the different technologies

Realization of large detectors (> 1m²) with different technologies

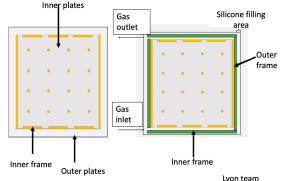

Construction and performance studies of large detectors of different technologies

Country	Collaborating Institution	Town
France	IP2I	Lyon
Spain	CIEMAT	Madrid
Belgium	VUB	Brussels
South Korea	SKKU	Suwon
China	SJTU	Shanghai
Germany	MPP	Munich
Israel	WIS	Rehovot
Italy	INFN-Ba	Bari
Italy	INFN-RM3	Rome
Italy	INFN-Na	Naples

- For Endorsement Readiness
 - Clarification of the participation of various groups
 - Clarification of committed resources
- Scientific work is ongoing!
- Regular WP5 scientific meetings organized!

WP5: Tasks Activities

CALICE Semi-Digital Hadronic Calorimeter (SDHCAL)



Studies showed that precise time information ($\underline{\sigma}_t$ better than 150 ps/hit) can improve on close-by hadronic showers separation leading to better PFA performances \rightarrow MRPC

MRPC are usually built with fishing lines → Homogeneity issues

Using spacers and appropriate gas circulation system ensures better uniformity

Anode (last plate with coating)

4-gap RPC

Production of circular spacers by a Taiwanese company following a discussion between IP2I, Kyoto University and Taiwanese groups of Academia <u>Sinica</u> and NC (all <u>now</u> parts of DRD1). This makes the MRPC fabrication much simpler

Diameter 2 mm Pitch 2 cm

Panel Group 佳值集團

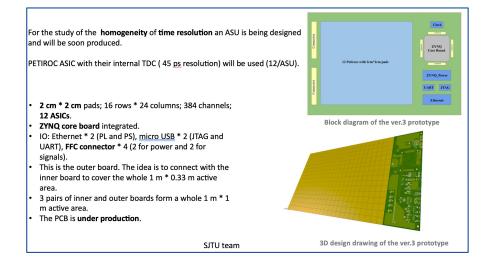
Contact person: Sean Chen 陳傑雄TEL:+886222212510 Mobile: +886987625807 email: sean@panel.com.tw

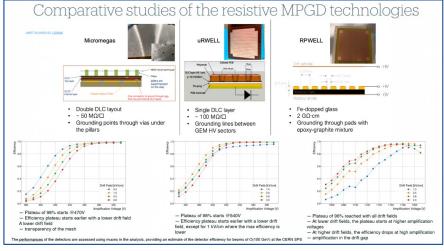
http://www.panel.com.tw/?lang=en

Production limitation of Mylar sticker thickness: min = 0.07mm, max = 1.5mm

diameter : min = 1mm

distance : min = 1mm

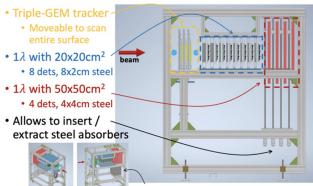

In our case: 0.26mm = 0.25mm Mylar + 2* 0.05 tapes
Teflon and Kapon are also possible.

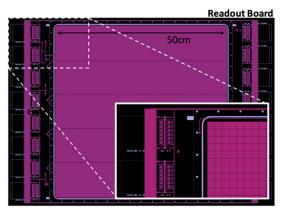


The company will produce for us also the strips for gas circulation

WP5: Gaseous Calorimeters

WP5: Future Activities




- For MRPC, study time response homogeneity
- For MPGD, conception of large surface detectors
- Common work on precision mechanics
- Discussion on using different variants of CALOROC ASIC developed by OMEGA within DRD6

Finalize the studies with digital/semi-digital readout for the small prototype:

- o Current semi-digital thresholds not optimized for MPGDs
- Development of a new cell prototype of ~2λ₁, including 8 20x20cm² chambers plus 4 50x50cm² chambers:
 - 2 MicroMegas and 2 μRWELL 50x50 cm² under production → ready in July/August
 - _ο μRWELL produced with new grounding schema to reduce dead area (ground dots instead of ground lines)

New cell prototype

Gaseous photodetectors

F. Tessarotto, S. Dasgupta

WP6 status

DRD1 WP6 not ready to start the endorsement procedure.

Change of participants:

DE-NAT-TUM decided to leave WP6

IT-INFN.PI decided to join WP6

WP6 scientific activity is ongoing in several of the listed Institutes

Deliverables/milestones unchanged

WP6 starting date to be decided

Updated resources table being prepared

Task ID	Task	Performance Goal	ECFA DRD Theme
T1	New robust UV photoconverters for gaseous photon detectors	Robustness against accumulated charge dose: < 20% deterioration of quantum efficiency for 100 mC/cm ²	
T2	Increase photon detection efficiency	Photoelectron efficiency in gas ≥ 75% of that under vacuum	
Т3	Suppression of ion feedback to the photocathode, increase of stability and longevity	Stable detector operation at gain of 10 ⁵ . IBF reduction down to10 ⁻⁴ Stable operation in harsh environment (10 ¹¹ neq/cm ²)	
T4	Gaseous photon detectors sensitive to visible light	Sustained photosensitivity to visible light in gaseous photon detectors	1.1, 1.2, 1.3
T5	Spatial resolution and readout granularity	Spatial resolution ≤ 1 mm	
T6	Time resolution	Time resolution ≤ 100 ps	
Т7	Modelling and simulation of gaseous photon detectors	Accurate simulation of IBF to the photocathode, gain and stability	
Т8	Large area coverage	Gain and QE variation $\leq 10\%$ over 1 m ² area with $\leq 10\%$ dead area.	
Т9	Readout electronics for single photon signals	New frontend ASIC chip with 64 channels, ENC 0.5 fC at 20 pF	

WP6 status

DRD1 WP6 not ready to start the endorsement procedure.

Change of participants:

DE-NAT-TUM decided to leave WP6
IT-INFN.PI decided to join WP6

WP6 scientific activity is ongoing in several of the listed Institutes

Deliverables/milestones unchanged

WP6 starting date to be decided

Updated resources table being prepared

Updated WP6 Institute list

Country	Collaborating Institution	Town	Institution Code	Contact
China	University of Science and Technology of China	Hefei	CN-USTC	Jianbei Liu
Finland	Helsinki Institute of Physics	Helsinki	FI-HIP	Francisco Garcia Fuentes
Greece	Aristotle University of Thessaloniki	Thessaloniki	GR-GSRI.AUTH	Dimitrios Sampsonidis
India	National Institute of Science Education and Research, Bhubaneswar	Bhubaneswar	IN- NISER	Shuddha Shankar Dasgupta
Israel	Weizmann Institute of Science	Rehovot	IL-WIS	Shikma Bressler
Italy	INFN Sezione di Padova	Padova	IT-INFN.PD	Gianmaria Collazuol
Italy	INFN Sezione di Padova	Pisa	IT-INFN.PI	Federico Pilo
Italy	INFN Sezione di Trieste	Trieste	IT-INFN.TS	Fulvio Tessarotto
Portugal	University of Aveiro	Aveiro	PT-UA	Joao Veloso
Switzerland	European Organization for Nuclear Research	Geneva	CH-CERN	Eraldo Oliveri
USA	Facility for Rare Isotope Beams, Michigan State University	East Lansing	US-FRIB-MSU	Marco Cortesi

Timing Detectors

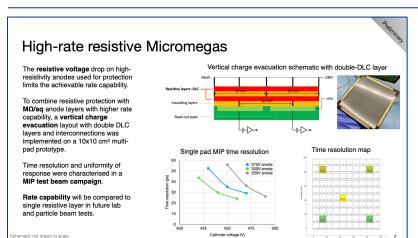
F. Brunbauer, I. Deppner, D. Gonzalez Diaz, I. Laktineh

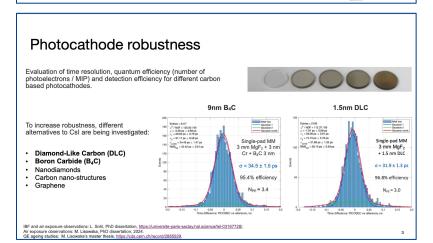
WP7: Timing Detectors

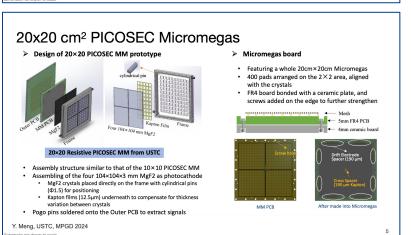
WP7 Project A

High-rate, high-granularity precise timing with MPGDs

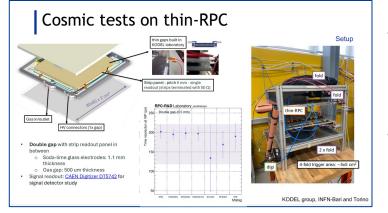
WP7 Project B


High-rate, large, precise timing (M)RPC

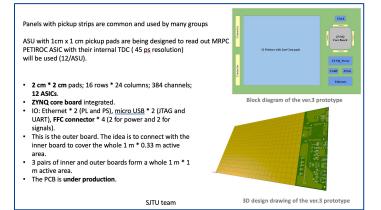

Task ID	Task	Performance Goal	ECFA DRD Theme
T1	Optimize the amplification technology towards large-area detectors	Uniformity over size of O(m²) (time resolution, rate capability, efficiency)	
T2	Enhance timing performance	Time resolution < 50 ps up to 30 kHz/cm ²	
Т3	Enhance rate capability	Time resolution < 200 ps up to 100150 kHz/cm ²	
T4	Spatial resolution and read- out granularity	Spatial resolution of mm with low number of readout channels	
Т5	Stability, robustness and longevity	 IBF <1% with <100 ps time resolution for single photoelectrons Stable, high-gain operation 	
Т6	Material studies	Radiation-hardnessLongevity	
Т7	Gas studies for precise timing applications	 Eco-friendly mixtures Recuperation Ageing mitigation CO₂-based mixture with geometrical quenching 	1.1, 1.3
Т8	Modelling and simulation of timing detectors	Modelling and simulation of timing detectors	
Т9	Readout electronics for precise timing	Low-noise FEE High input capacitance Large dynamic range – Fast rise time Sensitivity to small charges Multi-channel readout solution for timing detectors	
T10	Precision mechanics and construction techniques	Precise mechanics (μm) over relatively large active areas (hundreds of cm²)	
T11	Common framework and test facilities for precise timing R&D	Test bench for precise timing studies	

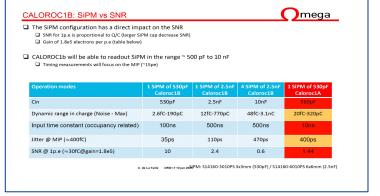

WP7A

Increased readout granularity For 3.5 mm readout pad pitch, comparable timing performance was observed on the central pad despite only having partially contained events, with most charge centered around the particle trajectory High granularity: 2.2mm pitch Medium granularity: Example muon events Example muon events 3.5mm pitch single pad | medium granularity | high granularity Medium pad pitch [mm] granularity mean signal ampl. [mV] 193 157.8 62.3 spatial central pad σ_t [ps] 13.9 16.9 ± 0.15 28.3 ± 0.3 resolution cluster size 4.0 3.6 σ ≈ 0.5mm x-residuals (full active area) [mm] 1.04 1.03 x-residuals (inner 6mm circle) [mm] Both timing and spatial resolution are worse for the high granularity readout, most likely due to the smaller signal amplitudes and imperfect pad connections.



WP7B


2X4-gaps detectors with low-resistivity glass and two different construction methods (fishing lines and spacers) were built exposed to PS beams. Results seem slightly better with the new technique for both standard and eco-friendly gases.


| Description | Property | Propert

Clear Synergies with WP1 and WP5

- A lot of progress for several different tasks
- Not all the groups are as involved was we would like
- Additional organisation efforts are still needed.

Reaction/Decay TPCs

E. Ferrer Ribas, D. Gonzalez Diaz, A. Bross, M. Cortesi, F. Monrabal, G. Dho

WP8: Reaction/Decay TPCs

WP8 Project A

High-Pressure TPCs for precision studies of neutrino interactions

WP8 Project B

TPCs for low-energy nuclear physics

WP8 Project C

Electroluminescence-based TPCs for Rare-Event Searches and other R&D on pure noble-gas amplification

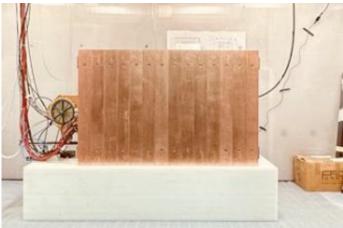
WP8 Project D

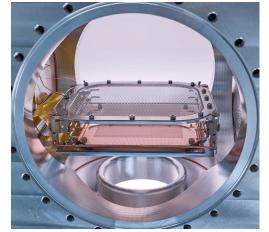
Radiopure and/or low-energy TPCs for precise track imaging and/or calorimetry with avalanche-based readouts

- WP8 kick-off (for endorsement) to be organized soon
- Re-vitalization of the WP8 plans
- Clarification of WP-FA involvements (DOE case!)

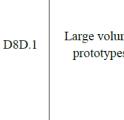
WP8D

Radiopure TPCs for precise track imaging and/or calorimetry with avalanche-based readouts


CAPA-UNIZAR


- TPCs of different shape and size with MPGDs
- GEMs and MM
- Optical and charge readout

Migdal


ANU (Australia)
HIP (Finland)
IRFU-CEA (France)
LPSC Grenoble (France)
Hamburg U (Germany)
UNI Bonn (Germany)
GSSI (Italy)
INFN Roma1 (Italy)
KOBE (Japan)
LIP (Portugal)
CAPA-UNIZAR (Spain)
CERN (Switzerland)
UK-RAL (UK)
U Manoa Hawaii (USA)
US-UNM (USA)

TREX-DM

CYGNO

WP8D

- Build large detectors that keep the performance of small prototypes
 - Charge or optical readout
 - Imaging through reduced diffusion (possibly negative ion drift)
 - TO resolution for fiducialisation
- Focus on gas properties
 - Both in diffusion and avalanches and scintillation
 - Use of H-rich or negative ion drift mixture
 - Radon purification
- Amplification stage development
 - Low radioactivity
 - Improve granularity, gain, optical response

0.1bar...1bar characterised by large Large volume prototypes

readout area above 10 cm x 10 cm [T1, T2], high pixelization, diffusion close to thermal limit [T4], superior energy resolution [T3], O(1cm) sensitivity on Z0 [T5] determination and large dynamic range. Detector operation can be electron or negative-ion mode, both optical or charge readout Characterization, modelling and

optimization of mixtures containing noble gases, SF₆, CF₄ and H-

compounds [T6] both in optical/charge

and electron / negative-ion response,

and optimisation of their purification, radioactive purity and distribution [T7]

Development of technology demonstrators operated in the range

D8D.2

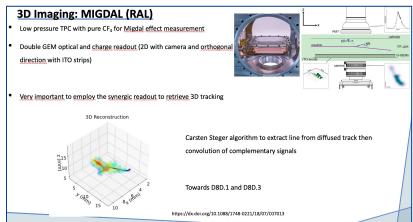
D8D.3

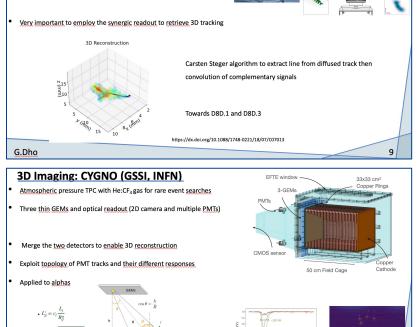
studies and management

Gas properties

Develop suitable amplification structures (MPGD including ones Radiopure modified with solid wavelengthamplification shifters), radiopure photosensors and radiopure construction techniques for structures

> charge and optical imaging [T1, T2, T4, T7]


WP8D Highlights


One can retrieve from PMT signals x,y

coordinate and L (light yield at GEM)

G.Dho

https://arxiv.org/abs/2506.04973

Resolution of about 1 cm

10

Going Big and Radiopure: Hawaii

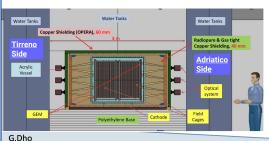
- Gas TPC with MM and strip readout (200 um pitch)
- 40 I detector with 20x20 cm² readout area and 2 50 cm drift region back-to-back

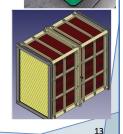
Determined optimal MM configuration

- Radioclean components inside the vessel
- Digitization between internal and external vessel
- Readout planes completed at CERN now in transit to Hawaii

Towards D8D.1 and D8D.2

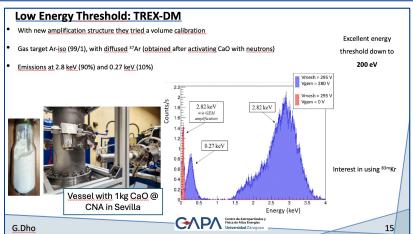
12

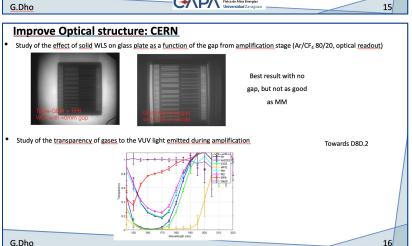

G.Dho

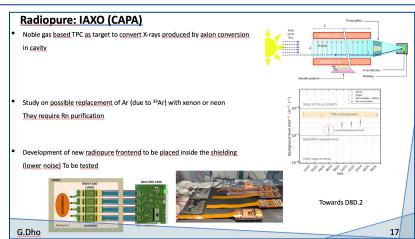

Going Big and Radiopure: CYGNO (GSSI, INFN)

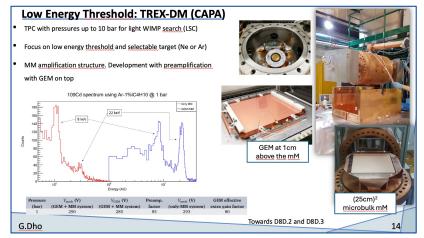
- Demonstrator of 0.4 m³ design about to be concluded
- 80x50 cm2 readout area and 2 back-to-back 50 cm drift
- Total 6 qCMOS cameras and 16 PMTs
- Will be hosted at LNGS and start taking data in about 1 year

Radiopure with internal field cage structure of Nylon66


Towards D8D.1 and D8D.2



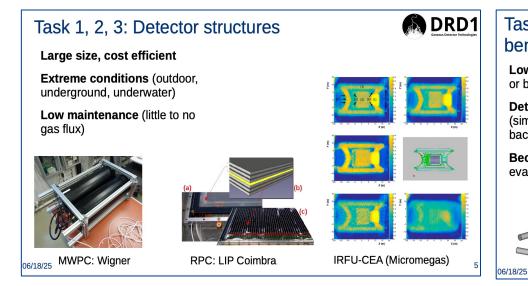



WP8D Highlights

Beyond HEP

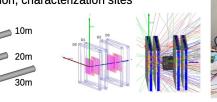
D. Varga, G. Croci, J. Bortfeldt

WP9: Beyond HEP


Muography, Medical physics and Neutron sciences with strong interconnections

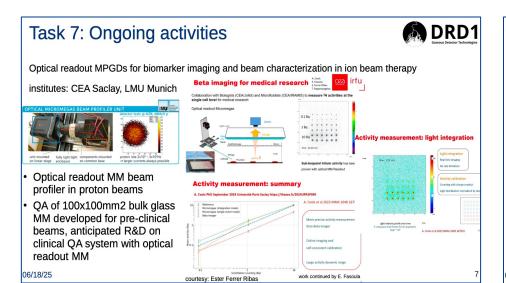
T1	Cost efficient large-size outdoor detector structures: design and construction
T2	Mechanical and environmental stability of detectors under outdoor or extreme conditions
T3	Detector portability and low maintenance operation
T4	Cost efficient, low power, long-lived Front-End and DAQ systems
T5	Detector configuration optimization and simulation methods for surface- and underground environments for muons and neutron experiments
Т6	Benchmarking performance, infrastructures and knowledge transfer
T7	Optical readout MPGDs for biomarker imaging and beam characterization in ion beam therapy
T8	Gaseous photon detectors for in-beam monitoring for ion beam therapy and imaging
Т9	Beam monitors with high temporal resolution for ion beam therapy and space radiation simulation
T10	Innovative neutron converter geometries in combination with gaseous amplifying structures for high-rate, efficient, low background detectors
T11	Spatial resolution, readout granularity and rate capability impact on neutron imaging and dosimetry
T12	Study of Gamma Ray sensitivity and neutron discharge probability

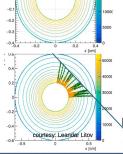
- May 30 2024: WP9 Kick-Off Meeting
- December 17 2024: WP9 MoU Preparation Meeting
- several sub-group meetings
- Now with a clarified MoU and participant list, WP9 can move towards the endorsement phase


Task 4, 5, 6: Electronics, optimization, benchmarking Low power FEE and DAQ solutions (solar-

or battery operation)

Detector configuration optimization (simulations including detector parameters, background physics, ...)


Bechmarking: performance definition and evaluation, characterization sites


Task 8: Ongoing activities

Gaseous photon detectors for in-beam monitoring for ion beam therapy and imaging (Sofia)

Detectors for online dose monitoring via beam induced PET activation

- · Resistive cylindrical chambers
 - o Massively parallel HPC Simulations [ongoing]
 - Non freon based gas mixtures
 - Efficiency and time resolution estimation
 - o Prototyping [in near future]
 - Glass tubes design, Ar based mixtures
- Glass multigap RPC
 - Prototype ready
 - o FE electronics to be developed

06/18/25

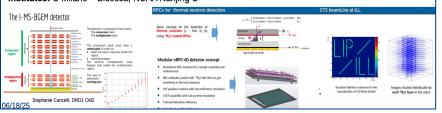
Task 9: Ongoing activities

Beam monitors with high temporal resolution for ion beam therapy and space radiation simulation (LMU Munich, MedAustron, GSI)

 $\label{lem:medAustron} \mbox{MedAustron development: compact proton synchrotron retrofittable to exisiting X-ray vault}$

- Micromegas beam monitor chambers under development for pencil beam scanning. To be integrated in dose delivery system.
- · LMU currently develops functional prototype
- development cycle according to the applicable legal stipulations to be started after successful tests

Task 10, 11, 12: Ongoing Activities



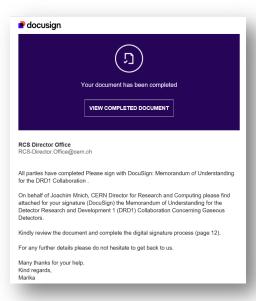
Task 10: Innovative neutron converter geometries in combination with gaseous amplifying structures for high-rate, efficient, low background detectors

institutes: U Milano – Bicocca, Bonn U, LIP Coimbra, AGH Krakow, Hamburg U, CEA Saclay, ESS Lund, FBK Trento, NUAA Nanjing U

Task 11: Spatial resolution, readout granularity and rate capability impact on neutron imaging and dosimetry institutes: U Milano – Bicocca, Bonn U, Hamburg U, CEA Saclay, ESS Lund, NUAA Nanjing U

Task 12: Study of Gamma Ray sensitivity and neutron discharge probability **institutes:** U Milano – Bicocca, NUAA Nanjing U

06/18/25


NEXT STEPS

DRD1 MoU - Current Status

DRD1 Collaboration CERN-MoU-2025-XX Memorandum of Understanding 14 July 2025 Memorandum of Understanding for the Detector Research and Development 1 (DRD1) Collaboration **Concerning Gaseous Detectors** THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, "CERN", an Intergovernmental Organization having its seat in Geneva, Switzerland, as Host Laboratory on the one hand, the Collaborating Institutions/Funding Agencies of the DRD1 Collaboration on the other hand 14 July 2025 Page 1 of 137

- MoU text frozen on July 14
- Distributed via DocuSign
- First MoU signed on July 22

This allowed us to:

- Establish the Resources
 Board (together with the
 Collaboration Board, the
 highest institutional body of
 the DRD1 Collaboration)
- Initiate the process for the endorsement of Work Packages

MoU: WP Annexes at the MoU Signature

IMPORTANT: MoU signatory funding agencies (RB) are not necessarily or exclusively the funding agencies supporting the activities in the WP. All contributing funding agencies – whether represented in the RB or not – will be involved in the approval of, or any changes to, the terms of the MoU for the WP to which they contribute.

Tasks

Institutions (EOI)

Deliverables (but no timeline)

Number	Title	Description	Expression of Interest ¹⁵
D1.1	Large area RPC, MPGD, TGC, MWPC, and SMDT prototypes	Dusing, construction and test of RPC, TGC, MPPC and AMD prestrepts unface coverage [11, 17, 16], optimized for medium-high flow rates (map test Alti-min fee MHcm-n), precise racking (100 µm) and timing (fer m.). This includes considerations for the compatibility of exe-friendly gases [15, 17]	BE-VUB, CN-USTC, FR. IRFU-CEA, DE-LMU, DE-MOP, HU-HUN- REN, IL-WIS, IT- DN'N BA, IT-INN' BO, IT-INN' BO, IT-INN' BA, IT-INN' RACI, IT- INN'N RACI, IT- INN'N RACI, IT- INN'N RACI, IT- OFFI RIN'S, P-KOBE-U, GO-IFA USTUFB, RO- IFA IFIN'HH, RS-IOFH- BG, CH-CERN, CH- UN'CE, IR-RITIN'S, UK-PHY-CAM, US-UT-IL- US-IN'NA-IL-BB
MI.1.1	Review of detector prototypes	Exemining the stems and fature prospects of incomment or estimate most eventure, and challenges in liphtwisting RPC, MPG, and IGC This variation includes compiling of a congrehensive report highlighting congramine performance, along with the expected and standard manages of available sectional specific IT, IT, IT, ST, ST, 87, 77, 81	
М1.1.2	Detector prototypes enhancement	Building upon the insights from M1.1. Proof of rate capability above 100 kHz/cwl, assessing the status and potential improvements of RPC and MPGD detectors, informed by feedback from the previous phase [T1, T2, T5, T6, T7, T8]	

Management

D1.2	New frontend and DAQ systems	docum of the s should DAQ d bounds resis	obstion of the innovative ASSC, and design, compilation of comprehensive production estation, if applicable, similation engineering run for the first chip, it be in an advanced stage [13], system prototyping for passeus electors, aiming by only the uries in neems of iming, redution to the transport of the prototyping for the	FR-IRFU-CEA, HU- HUN-REN, IT-INFN BO, IT-INFN FR, IT- INFN RM2, IT-INFN IO, RO-IFA UNITIEV, RO- IFA UNITIEV, RO- IFA UNITIEV, RO- IFA INSTER, RO- IEMAT, ES-UNIOVI, CH-CERN, TR-ISTINYE, US-ITA- US-ITA- US-ITA-
MI.2.1	Review of the status of the arr of ASICs and DAQ systems		nition of requirements for next ation large area muon systems [73, 74]	
	Package tly applicable ¹⁶ .		ating Institutions and Funding .	Agencies to the Work
Not curren	Package tly applicable ¹⁶ . Management Stru- pement structure of	octure of the Work	ating Institutions and Funding of the Work Package Package is described in Annex of g Functions of Specific Respons	i.
Not current i.3.7 The manag	Package thy applicable 6. Management Structure of Persons Currently	octure of the Work	the Work Package Package is described in Annex 4	i.
Not current i.3.7 The manag	Package thy applicable ⁽⁶⁾ . Management Stru- persons Structure of Persons Currenth Package	octure of the Work	the Work Package Package is described in Annex 4 g Functions of Specific Respon	i.l.
i 3.7 The manag	Package thy applicable 6. Management Structure of Persons Currently Package Function	octure of the Work	the Work Package Package is described in Annex e g Functions of Specific Respons	ibility in the Work Institution Code
i 3.7 The manag	Package thy applicable ⁽⁶⁾ . Management Stru- persons tructure of Persons Currenth Package	octure of the Work	the Work Package Package is described in Annex 4 g Functions of Specific Respons Name Gabriella Pugliese	Institution Code IT-INFN BA
i 3.7 The manag	Package thy applicable 6. Management Structure of Persons Currently Package Function	octure of the Work	the Work Package Fackage is described in Annex 4 g Functions of Specific Respon- Name Gabriella Pagiese Riccardo Farinslii	ibility in the Work Institution Code IT-INFN BA IT-INFN BO

Deep 44 of 137

NO Funding Agencies and NO Contributions of Participating Institutions

WP endorsement procedure drafting timeline

- ✓ Drafting by the committee
- ✓ The draft circulated within SCB on 15.11.2024
- ✓ Discussion in the SCB on 22.11.2024
 - WP Leaders are encouraged to get feedback from the WP Institutes (WP-FAs) and discuss
- ✓ Discussion in the MB on 29.11.2024
 - Draft with additional comments from SCB; expected endorsement from the MB
- ✓ DRD1 Collaboration Meeting, WP session on Monday, 09.12.2024 procedure presentation.
 - Open discussion within the Collaboration
- ✓ Presented to CB on 12.12.2024
 - Presented for the endorsement of the CB
- ✓ Updated and endorsed by MB/CB on 25/26.02.2025
- ✓ Informative meeting: CB, RB, WP-Fas
- ☐ Approval by DRD1 RB

Key aspects of the procedure

- Follow articles 8.6 and 18.4 of the MoU (see backup)
- Define a clear time flow
- Avoid duplicating work. Clear list or required documentation without overlapping or duplication.
 Proposed list of documents needed for the endorsement:
 - 1. MoU Annex 6 (updated with all tables)
 - 2. Work Package Executive Summary for Internal DRD1 Scientific and Resource Endorsement
 - 3. WP Leader Presentations for Scientific Coordination Board
 - 4. WP Leader Presentations for Resources Board
- **Simplify the collection of the required information** for the endorsement process. Using common templates see documents attached.

Resource endorsement: Annex 6 tables (existing in MoU and to be included)

Description

Task ID	Task	Performance Goal	ECFA DRD Theme
TI	New RPC and TGC structures	Achieve RPCs and TGC with a high-rate capability (ranging from 10 kHz/cm² to 1 MHz/cm² on or improved timing resolution (raching sub-ns to ps levels) using new resistive materials and fine structure.	
T2	New Resistive MPGD Structures	Development of large area resistive MPGD capable of efficient and stable operation under conditions of high rates (D2.1) as well as low/medium rates (D2.2)	
Т3	New Front-end electronics	Frontend operation up to 0.11 GHz; High density channel; Radiation hardness; time resolution (< 10 ps); local zero suppression; higher FE gain amplification	
T4	Optimization of scalable multichannel readout systems	Development of novel Scalable Readout Systems for Gaseous Detectors. Development of a new FPGA-based readout system that matches the data throughput of the electronics	1.1, 1.3
T5	Eco-friendly gases	Reduce GHG emissions from the detectors and define new ecological gas mixtures that maintains similar performance to the current gas mixture	
Т6	Manufacturing	Constructing and exploring cost-effective methods for producing high-quality, high- performance large area resistive MPGD, and new RPC, TGC, MWPC, and sMDT suitable for low to medium rates with industrial production	

2. Participating institutions

The institutions listed in the following table have expressed interest12 in joining and contributing to the Work Package but have not yet secured the required support from their Funding Agencies.

Country	Collaborating Institution	Town	Institution Code	Contact
Belgium	Vrije Universiteit Brussel	Brussel	BE-VUB	Michael Tytgat
China University of Science and Technology of China		Hefei	CN-USTC	Jianbei Liu
France	Institute of research into the fundamental laws of the Universe, CEA, Université Paris-Saclay	Gif-sur- Yvette	FR-IRFU-CEA	Maxence Vandenbroucke

5. Contributions of Participating Institutions and Funding Agencies to the Work Package

Deliverable	Institution Code	Funding Agency Code	Investment (kCHF)	Person Power ^d (FTE/y)
D1.1				
D1.1				
D1.2				
D1.2				/
D Total				

4. Start And End Date, Deliverables and

Time Scale

Number	Title	Description	Start Date	End Date	Participating Imstitutions
D1.1	Large area RPC, MPGD, TGC, MWPC, and sMDT prototypes	Design, construction, and test of RPC, MPGD, TGC, MWPC and sMDT prototypes with advanced solutions for extensive surface coverage [T1,T2,T4], optimized for medium-high flow rates (range tens kHz/cm2), precise tracking (100 µm) and timing (few ns). This includes considerations for the compatibility of eco-friendly gases, [T5, T5].			BE-VUB, CN-USTC, CN- CUHK, CN-HKU, CN-HKUST, FE-IRFU-CEA, DE-LMU, DE- MPP, HU-HUN-REN, IL-WIS, IL-INFN BA, IT-INFN BO, II- INFN RB, IT-INFN LNF, IT- INFN RM, JP-KOBE-U, RO- UNSTPB, RO-IFIN-HH, RS- JOHH-BG, CH-CERN, CH- UNIGE, TR-ISTINYE, UK-PHY- CAM, US-UFL, US-TINAF- JLAB
M1.1.1	Review of Detector Prototypes	Examining the status and fittine prospects of imnovative resistive materials, novel structures, and challenges in hybridizing RPC, MPGD, and TGC. This evaluation includes compiling of a comprehensive report highlighting comparative performance, along with the respective advantages			

and disadvantages of

3. Funding Agencies

Country	Funding Agency	Funding Agency Code	Representative	Institution(s) represented ^d

⁴ Only if different from Funding Agency

6. Persons Currently Holding Functions of Specific

Responsibility in the Work

P	ac	ka	ge

Function	Name	Institution Code	
Work Package Leader	Nicola De Filippis	IT-INFN.BA	

66	Latest time		-5 week to CB		-3 week to CB	-2 week to CB		CB Date
E N F		Requirement	Updated Annex 6 with all tables WP Executive Summary		Updated WP Executive Summary Referee report Annex 6	All documents and presentations ready Summary of WP-FA acknowledgements 1h Dedicated SCB/MB Meeting for the WP Scientific Review		SCB and MB recommendation to CB
R A L	SCIENTIFIC REVIEW and ENDORSEMENT	Action	 All documents sent to the W the Resource Coordinator, a Referee report is prepared w The Referee works together the WP Executive Summary 	within 2-week time period.	Documents sent to SCB and MB by WPs Coordinator	1) Open session (30') - WPL or WPPL present with all WP members present. Open to all collaboration. 2) Closed session (30') - Internal referee presents their report; SCB and MB members may ask questions. WPLs, WPPLs and WPMembers present		
т		Outcome		WPs Coordinator and Resources Coordinator receive the referee report and updated WP Executive Summary	Any major concerns identified by the respective board members shall be communicated before the dedicated SCB meeting	Final referee report and SCB minutes		WP Endorsement by CB
	Latest time		-4 week to RB		-2 week to RB		RB Date	
M E		Requirement	Updated Annex 6 with all tables		75% of acknowledgements expected (otherwise, needs to be discussed in the SCB endorsement)		30' Dedicated RB Meeting 30' per WP project	
L I	RESOURCES ENDORSEMENT	Action	The annex is distributed to the RB and pertinent WP-FA and requests for acknowledgement in 2 weeks		Summary of pertinent WP-FA acknowledgements of existing Resources are sent to SCB and RB		1) Closed session (30') - WPL presents resource tables and a list of acknowledgements (100% expected)	
N E		Outcome					WP Endorsement by RB and pertinent WP-FAs	

WP Endorsement: next steps

- Approval of the WP Endorsement Procedure by RB
- Endorse WP internal referees
- Initiate endorsement of first WPs

WP ID	Title	Annex	Ready for endorsement
WP1	Trackers, hodoscopes, large area muon systems	6.3	√
WP2	Drift chambers	6.4	√
WP3	Straws and drift tubes	6.5	√
WP4	Tracking TPCs	6.6	
WP5	Gaseous calorimeters	6.7	
WP6	Gaseous photon detectors	6.8	
WP7	Timing detectors	6.9	√
WP8	Reaction/decay TPCs	6.10	
WP9	BHEP applications	6.11	√

SUMMARY

- WP Scientific is ongoing despite of long MoU drafting and signing procedure
- Sign up to a WP → , this way you may get funded in your FA
- The procedures per country were not clear, but they ARE getting clarified in many cases
- If this is not yet the case with your QP-FA, sign up anyway, it is good to collaborate

- Many WP and WP projects are ready for endorsement
- Clarification of committed resources from WP-Fas, ongoing or to be restarted;
 Need more communication with institutes to understand the status, resources and plans
- Templates to be circulated, work towards endorsement can start now!

BACKUP

WP ENDORSEMENT PROCEDURE

Special DRD1 Meeting - Meeting with Funding Agencies

17.09.2025

P. Gasik (GSI/FAIR + TU Darmstadt)

Baseline - MoU rules (WP relevant)

Article 8.6

The terms of each Work Package, Working Group and Other Work Entity shall be approved by the Collaboration Board and the Resources Board and, in case that a Work Package, Working Group or Other Work Entity is funded at least partially by sources other than the Common Fund of the Collaboration, also require the explicit approval⁸ of all contributing Funding Agencies.

Article 18.4

The Collaboration shall have authority to decide on any update of information in the Annexes, without the need for signature of a corresponding Amendment. Changes to Annexes 6, 7 or 8 affecting resources contributed by a Funding Agency shall require the approval by all Funding Agencies contributing to the Work Package, Working Group or other Work Entity, as the case may be.

Annex 4.1.4: Resources Board

For the approval of Work Packages, Working Groups and/or Other Work Entities under Article 8.6 and for updates of resources of Work Packages, Working Groups and/or Other Work Entities under Article 18.4, representatives of the contributing Funding Agencies shall be invited to the pertinent meeting of the RB.

⁸ Explicit approval may take the form of a minuted vote in the Resources Board session, a confirmation of a funding grant compatible with the Funding Agency's engagement or a written statement attached to the minutes of the Resources Board

Baseline - MoU rules (WP relevant)

Annex 6.1.1: General Clauses

A Work Package may consist of multiple projects.

Documents substantiating the proposed approvals or acceptance of review results shall be provided to the pertinent bodies and Funding Agencies not later than two weeks before the decision-making meeting(s).

Annex 6.1.2: Participation, Addition and Withdrawal of Institutions

Institutions wishing to participate in a Work Package shall be members of the DRD1 Collaboration.

Adding (an) Institution(s) to an existing Work Package gives rise to an update of the Work Package's terms.

Institutions and/or Funding Agencies wishing to withdraw from a Work Package and terminate their obligations under the Work Package's terms shall give not less than six months' notice in writing to the Work Packages Coordinator, the pertinent Work Package Leader(s), the Co-Spokespersons, the Collaboration Board Chair and Deputy, and, if applicable, their Funding Agency/Agencies

Annex 6.1.3: Approvals

The approval procedure for establishing a Work Package including its initial terms is set out in Article 8.6.

The approval procedure for updates of the terms of a Work Package is set out in Article 18.4.

Baseline - MoU rules (WP relevant)

Annex 6.1.4: Reviews

Prior to establishing a Work Package and annually once a Work Package is established, both the Scientific Coordination Board (SCB) and the Management Board (MB) shall review the Work Package scientifically, addressing in particular

- The alignment of the Work Package with the ECFA Detector R&D Roadmap document;
- The progress in the scientific programme of the Work Package and its objectives (only for the annual reviews);
- A detailed list of expected deliverables and milestones of the Work Package;
- The Work Package's collaboration and interaction with Working Groups, other Work Packages and other DRD collaborations;
- The availability and usage of the resources of the Work Package.

The SCB and the MB shall report to the Collaboration Board with a recommendation on whether to establish or continue the Work Package.

WP Internal Referee

- Upon the establishment of the Work Package, the Work Packages Coordinator will nominate, in agreement with the
 Management Board (MB), an Internal Referee. The Referee should be one of the members of the MB. The SCB and the MB must
 endorse the nomination.
 - Being a member of the MB assures that the person is up to date with DRD1 and WP activities
 - Nominated MB members may ask an expert from outside MB for support
 - Internal referee from the institute that does not participate in the WP
- Referee(s) work together with WPLs (see also next slides). (S)he is not a single person to decide on the endorsement, but is preparing the background for discussion in the SCB
- The goal of the procedure is an <u>endorsement</u>.
 - Research line compatible with ECFA, synergies within collab and other DRDs, etc. Status of Milestones and Deliverables.
- The referee is preparing a report, following the template
 - Findings, comments, and recommendations
 - The report helps in the Scientific Endorsement; it serves as a baseline for minutes.
- SCB and MB shall establish the list of referees after the procedure is approved


WP Internal Referee – nomination criteria

MB members

- Consider elected/nominated MB members (15 in total)
- Ex-officio members are primarily not considered (e.g. SPs, CB chairs, SCB chairs, RCB chairs)
- Try to avoid a WP Leader being an internal referee for another WP
- **WP with sub-projects:** a WP Internal Referee overlooks endorsement of the entire WP, asking for help from experts outside the MB, to support him/her with the WP sub-projects
- Need to identify 9 WP internal referees.
 - Candidates for the WP internal referees identified they will be asked for their consent
 - Priority to fix WP Internal Referees for WPs closest to being endorsed
 - Compile a list and present it to MB/SCB/CB for endorsement

Endorsement: Required Documentation

7.4.1.2 Start And End Date, Deliverables and Time Scale

The Work Package starts on January 1st, 2024 and ends on December 31st, 2026.

Updated version of **MoU Annex 6**

Referee report,

following the WP
Executive Summary
document layout.
Findings, Comments,
and Recommendations
for each part

Vork Cymes Scientific Endorsement

The dedicated Scientific Coordination Board Meeting (SCB) are to the Work Packages Coordinators one month before the date Dedicated SCB Meeting.

	Trackers, Hodoscopes, Large area	
Management		
Role	Name	Institute
WP (Project) Leader		
Work Package Endorse	ment Process	
SCB Dedicated Meeting	dd/mm/yyyy	
RCB Dedicated Meeting	dd/mm/yyyy	
sniCB Meeting	dd/mm/yyyy	
Motivation		
stability, robustness, le	a-area muon systems at future facil ing-term performance, and cost-effe	
hodoscopes, and larg	a-area muon systems at future facil eng-term performance, and cost-effe	
hodoscopes, and larg stability, robustness, la partners.	a-area muon systems at future faciling-term performance, and cost-effe	ctive manufacturing with indust

WP Executive Summary

A concise review of the status of the WP activities.

(It will include a section – not for endorsement – presenting long-term plans and additional requests for funds)

Work Package #
Scientific Endorsement
Template

20' minutes presentation for the Scientific Coordination Board (reflecting the review)

e check the endorse Work Package #
Resource Endorsement
Template

10' minutes presentation for the Resource Coordination Board

Note

- Resources endorsement
 - The Resources Board and the pertinent WP Funding Agencies will organise a resource review
 - RB = all DRD1 FAs signing the MoU
 - WP Funding Agencies = FAs committing resources for WP activities

- In the case of a WP with sub-projects:
 - Full WP is endorsed, with all sub-projects
 - If a sub-project is not ready to be endorsed, its tables will be simply <u>not updated</u>. Still, all pertinent WP-FAs will be notified.