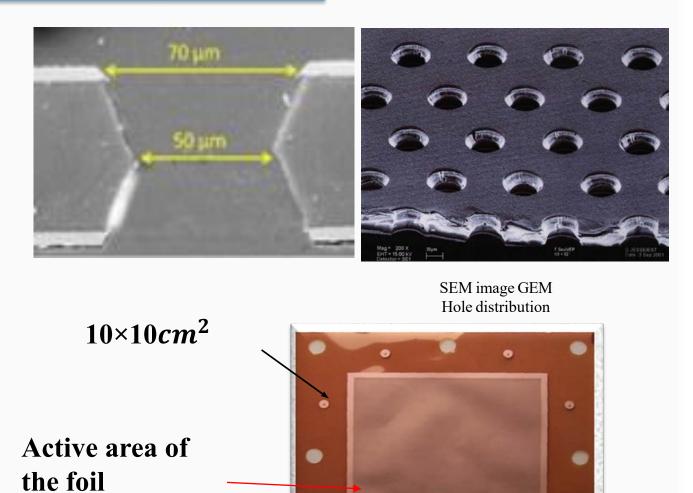


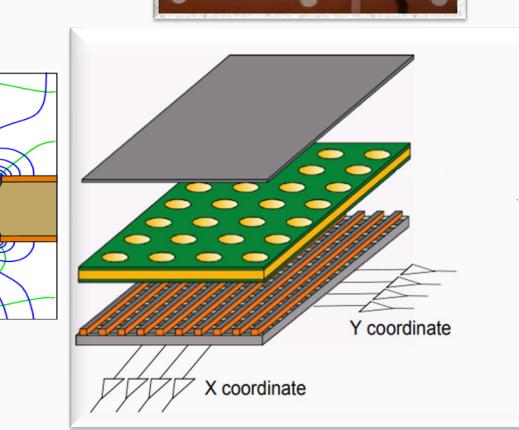
Application and Utilization of the GEM Detector in Security and Agriculture Fields

Chandra Prakash, Md. Naimuddin, Ashok Kumar University of Delhi, Delhi-110009, India

Introduction of GEM detector

Introduction

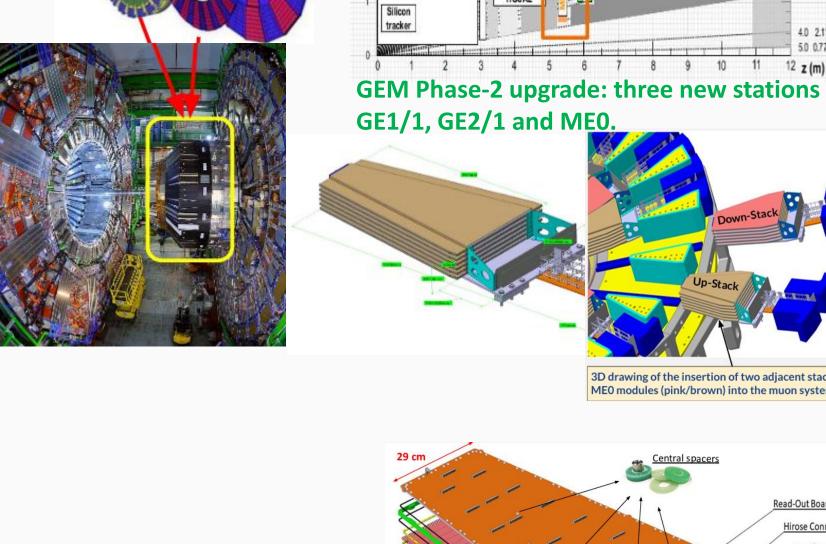

- □ Gas Electron Multiplier (GEM) is a gaseous charge amplification structure with wide application in high energy physics and other active research fields due to its excellent features
- **□** Feature of triple-GEM
 - Higher Radiation rate handling capability up to $\sim 10 \text{ MHz/cm}^2$
 - Excellent spatial resolution ($\sim 100 \mu m$) **Good Timing resolution (~10ns)**
 - Muon detection efficiency (~98%) for single
 - Can be designed in various hole sizes and shapes
 - Low aging effect

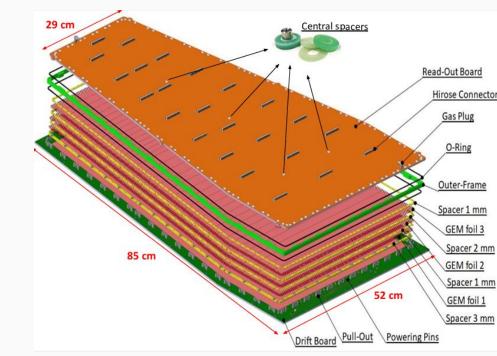

GEM Foil/Hole Design

- \Box GEM foils consist of a 50 μ m thin polyamide (Kapton/Apical) coated with a 5 μ m thin layer of copper on both sides
 - **Bi-conical holes:**
 - Inner diameter(polyamide): $\sim 50 \mu m$ Outer diameter (copper): $\sim 70 \mu m$
 - Pitch: ~140µm
 - Holes density: 6000/cm²

Operating principle

- Low operating voltage (300-400 V)
- Each hole acts as a proportional counter.
- Multiple foils can be used for desired charge amplification.
- High charge gain makes it compatible with even less sensitive signal-processing electronics chain


Application in HEP

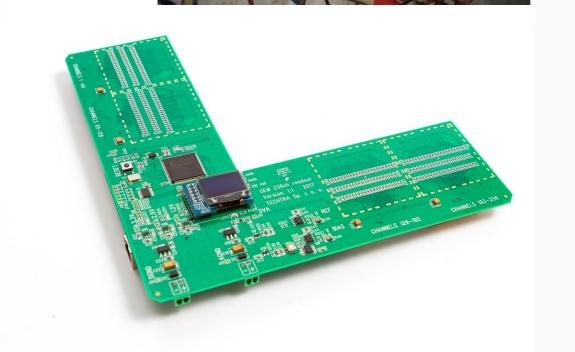

CMS (Compact Muon Solenoid) Detector

- \Box A general-purpose experiment measuring proton-proton and heavy-ion collisions at the Large Hadron Collider (LHC) at CERN.
- ☐ LHC is currently running at p-p energies 13.6 TeV, with luminosity exceeding ~ 1034 cm-2 s-1. For the HL-LHC (High Luminosity LHC) period-Integrated luminosity will increase tenfold w.r.t. LHC's design value.
- ☐ GEM detectors in CMS- To improve the triggering muon forward reconstruction.
- ☐ In Phase-2 upgrade- ME0 GEM detectors will extend the acceptance of the muon system, which will improve muon identification

Description of the new ME0 stations

- ☐ The ME0 detector station comprises 36 ME0 stacks (18 per endcap). ☐ Each stack consists 6 ME0 triple GEM detectors; total 216 ME0 modules required.
- ☐ Install behind the new Endcap HGCAL.
- \Box Coverage extends from $|\eta| = 2.0$ to 2.8. Each stack covers $\delta \varphi = 20^{\circ}$.
- ☐ Radial distance from beam line: 63 cm.

Imaging with GEM


Motivation

- ☐ GEM detectors provide excellent spatial and time resolutions
- ☐ Capable of handling high particle flux
- ☐ Suitable for imaging applications
- ☐ Aim: detailed evaluation of imaging capability using in-house GEM detector

Experimental Setup

- ☐ Tested GEM detector with well-characterized parameters
- ☐ 2D readout board: 256 strips with 0.39 mm pitch (X & Y axes) ☐ Signals readout via 4 Panasonic male connectors
- (128 channels each) ☐ Charge collection at 6k samples/s using 256-
- channel Techtra GEM board \Box Readout made compatible by pairing successive \Box Charge information per strip is stored (6k)
- strips ☐ GEM readout electronics: 4 DDC24 ADCs, 20bit, 64-channel each

HV Supply

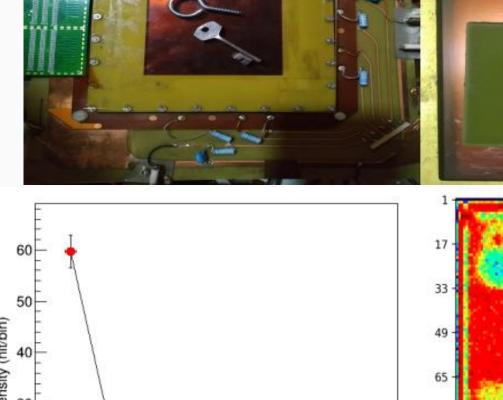
Xilinx Spartan-3 FPGA to control various

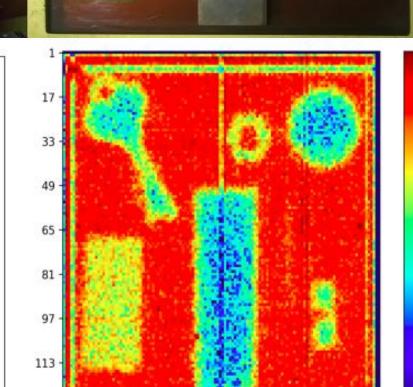
electronics components and connect to a

Algorithm finds cluster, and the Gaussian fit

Experimental Setup

computer (100 Mbps)


sample/s)


☐ 64 channel 20 bit ADC(DDC24)

mean is taken as the hit position

Image Reconstruction & Results

- ☐ Detector gain set to ~10k, X-ray operated at 5 kHz
- ☐ Data stored in raw format → processed for image reconstruction ☐ Basic cuts applied on the energy spectrum & time for quality
- improvement ☐ Images successfully reconstructed for **copper**, **steel**, **alloys**,
- FR4 ☐ Example: 20k events (~10.24M sub-events) used for image
- reconstruction
- ☐ Limitations:
 - \square X-ray source overheats after a few minutes \rightarrow interrupts data taking
 - ☐ Slow readout electronics limit statistics
- ☐ Future upgrades: higher stability X-ray source & fast readout system

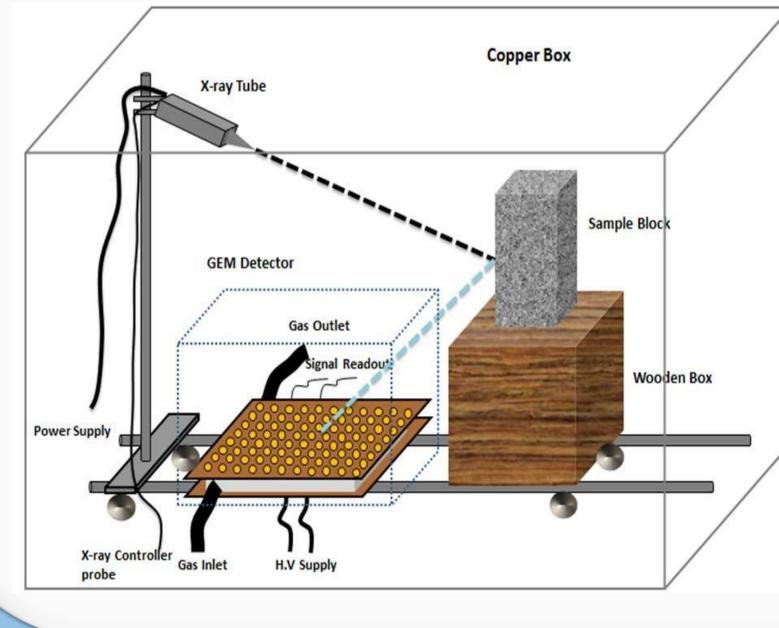
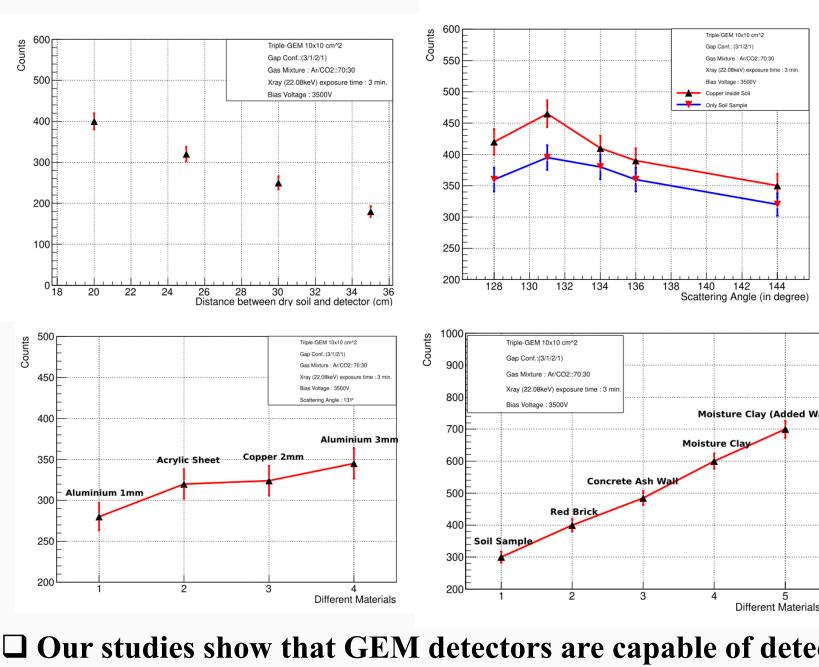


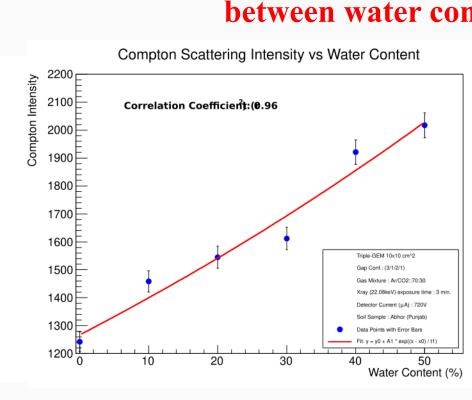
Image reconstruction

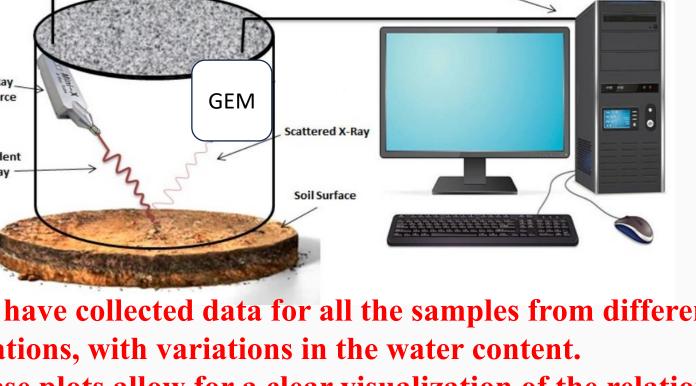
- \Box Exponential attenuation law: $I/I_0 = e^{-(\frac{\mu}{\rho}.x)}$
- Hit density below each object is calculated The plot clearly reveals the identification of
- the object based on the mass thickness ☐ Object dimensions are measured within 1% of tolerance


Motivation: To detect underground land mines and hidden metallic and non-metallic objects

- □ We utilized GEM to detect the metallic or nonmetallic objects buried under the soil/mud.
- □ Setup was created using the x-ray and GEM detectors along with the required readout system.
- ☐ Different types of soils and material have been used for this study with the source of 22.08 keV energy Xray materials

Agriculture Application of GEM


To determine the optimal scattering angle for the future study, we have conducted a thorough analysis of various scattering angles



- ☐ Our studies show that GEM detectors are capable of detecting 1500 materials buried under the soil/mud.
- ☐ Our limitation is due to the use of soft X-rays.
- ☐ Initial results are quite promising, but need hard X-rays to make a prototype that can detect objects hidden deep inside the soil

- **Motivation:** The study of grain size and water content of soil is important because these properties directly affect plant growth and crop
- ☐ Grain size affects water, air, and nutrient holding capacity
- ☐ Water content shows how much water plants can ☐ Helps decide which crops grow best in the soil
- ☐ Guides efficient irrigation planning ☐ Supports sustainable soil management & higher
- yields ☐ We can study these soil changes using **Scattering Technique**.

Scattering Intensity vs Water Content

We have collected data for all the samples from different locations, with variations in the water content. These plots allow for a clear visualization of the relation between water content.

Gautam Buddha Park Soil ,North Campus --- 45 μm - 90 μm र् 1410

Conclusions

- ☐ We have made efforts to identify objects inside the soil. Primary results are satisfactory. But we require a high-energy X-ray source. We are trying to improve the results.
- ☐ We have clearly seen the effect of water content in the soil, the density of the soil, and the particle size of the soil. which proves valuable in agriculture
- ☐ An attempt at imaging with a GEM detector showed a promising outlook and is capable of distinguishing materials of different densities.

Acknowledgements

The author acknowledges a Young Researcher Grant supported by the DRD1 Collaboration

- [1] F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nucl. Instrum. Methods A 386 (1997) 531, [2] Asar Ahmed, "The Qualification of GEM detector and its application to Imaging", JINST
- [3] Techtra GEM board, Techtra technology transfer agency [4] CMS Collaboration, The Phase-2 Upgrade of the CMS Muon Detectors: Technical Design Report, CMS-TDR-016, (2017).