ToRA ASIC for the AMBER MM experiment

Chiara Alice, Maxim Alexeev, <u>Gianni Mazza</u>, Marco Mignone, Richard Wheadon

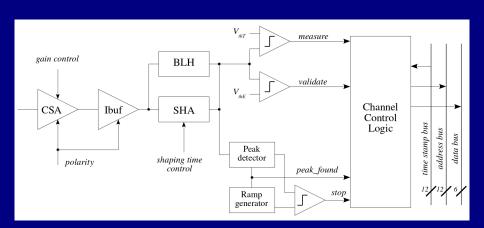
> AMBER collaboration mazza@to.infn.it

October 9th 2025

ToRA ASIC project

- New development for the MicroMegas detector of the AMBER experiment
- Possibly compatible also with straw detectors
- Moderate timing resolution (1-2 ns or better)
- Analog Front-End: custom development
 - inspired to VMM⁽¹⁾ and Tiger⁽²⁾ designs
- Back-end: same as the ToASt ASIC⁽³⁾
 - silicon proven
 - save time in terms of design and test set-up development

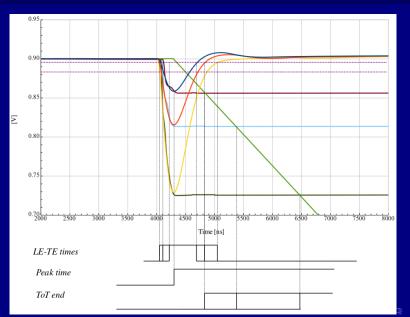
⁽¹⁾ G.De Geronimo et al., The VMM3a ASIC. IEEE Trans. Nucl. Sci., vol. 69, no. 4, Apr. 2022

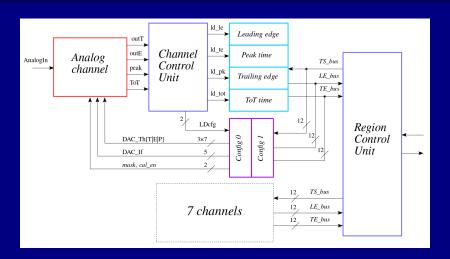

⁽²⁾ A.Rivetti et al., TIGER: A front-end ASIC for timing and energy measurements with radiation detectors, Nucl. Instrum. Meth., A 924, pp. 181-186, 2016

⁽³⁾ G.Mazza et al., A 64 channels ASIC for the readout of the silicon strip detectors of the PANDA micro-vertex detector, J. Instrum., vol. 18, C01020, Jan. 2023

Specifications

Detector	MM	Straw		
Channels/ASIC	64	64	1	
Power/channel	≤10	≤10	≤10 mW	
Input capacitance	≤500	20-100 pF		
Input charge	1-100	1-1000	fC	
Input impedance	≤50 Ω	tbd	Ω	
Max rate	≤2	≤0.18	MHz	
Peaking time	150	75-150 ns		
Time resolution	1-2	≤1	ns	
Charge resolution	8	10	bits	
Gain	12	12 2		
ENC @10 pF	500-1000	e ⁻		
ENC @150 pF	1000-2000	000		
ENC @60 pF		3000	e ⁻	
Threshold range	tbd	0-15	fC	
Clock frequency	200	200	MHz	

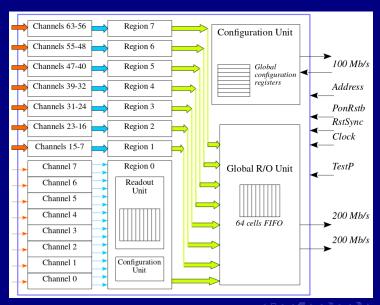

Analog channel architecture


Analog front-end

- Charge Sensitive Amplifier
 - Fours gains: 2,6,8 and 12 mV/fC
 - Possibility to accept inputs from both polarities
- Shaper
 - 3rd order, one real and two cc poles
 - Programmable peaking time: 25, 50, 150 and 250 ns
- Double threshold signal detection
 - Lower threshold for time measurement, higher threshold for validation
- Peak detector and holder
- Two ToT measurements
 - From leading and trailing edge times
 - From peak and ramp crossing times

Signal detection

Full channel architecture


- Common time stamp
- 4 data register for time acquisition

- 2 configuration registers
- Thresholds and discharge current DACs

Time measurement

- Time resolution set by clock frequency
 - 200 MHz \rightarrow 1.44 ns r.m.s.
- ToT-based charge measurement for time walk correction
- Option for second version
 - Channel or region-level 8-tap delay line
 - Delay controlled by a global DLL
 - Time resolution 180 ps r.m.s.
- Studies ongoing real signals
 - Problem of multiple ionization
 - Detector-FE co-design

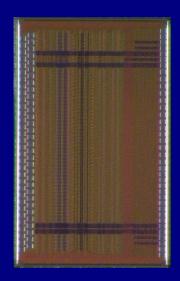
ASIC architecture

Readout scheme

- Event driven (no trigger)
- Time of arrival order is different from time of readout
- Events are divided in frames
 - Frame duration : full cycle of the time-stamp counter
 - Event readout order does not correspond to event time of arrival
 - Events in a given time frame are not time-ordered
 - Events belonging to the same time-stamp counter cycle are transmitted in the same frame
- Continuous data transmission (sync words when no data available)

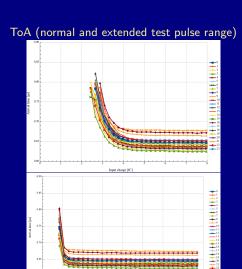
Output data format

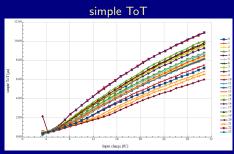
- Data output in 32 bits words over 1 or 2 serial links @ 200 Mb/s
- Two 32-bit words per event (one in LeTe mode)
- Frame : rollover time for the time stamp counter, i.e. 20.48 μ s at 200 MHz
- Data within a frame are packed within a frame header and a frame trailer
- Frame header contains chip id and frame number
- Frame trailers contains the number of valid samples and CRC


Packet type	Header	Data			
	2 bit	30 bits			
Data word 0	10	Region[2:0]	Channel[2:0]	Le[11:0]	Te[11:0]
Data word 1	11	Region[2:0]	Channel[2:0]	Pk[11:0]	ToT[11:0]
Header	01	01	Reserved[12:0]	Chipld[6:0]	FrameN[7:0]
Trailer	01	10	DataCnt[11:0] CR		CRC[15:0]
Sync	00	00	1100 1100 1100	1100 1100 1100	1111

ToRA configuration

- Data input and output in 16 bits words over 100 Mb/s serial links
- 7 bit address (from external pads)
- Broadcast address (write only)
- 18 Global Configuration Registers (GCR)
- 2×64 Channel Configuration Registers (CCR)


Function	Data	Op code
	4 bits	12 bits
Chip Select	1101	$01a_{\mathrm{B}}a_{6}a_{5}a_{4}a_{3}a_{2}a_{1}a_{0}$ 00
Chip Deselect	0000	00xx xxxx xxxx
Register select (channel)	0100	$0000r_2r_1r_00c_2c_1c_0a_0$
Register select (region)	0100	$0000r_2r_1r_01a_3a_2a_1a_0$
Register select (global)	0100	$00010 a_6 a_5 a_4 a_3 a_2 a_1 a_0$
Register write	0101	$d_{11}d_{10}d_{9}d_{8}d_{7}d_{6}d_{5}d_{4}d_{3}d_{2}d_{1}d_{0}$
Register read	0110	0000 0000 0000
No operation	1111	0000 0000 0000
GCR read word	1000	$d_{11}d_{10}d_{9}d_{8}d_{7}d_{6}d_{5}d_{4}d_{3}d_{2}d_{1}d_{0}$
Channel register read word	1010	$d_{11}d_{10}d_{9}d_{8}d_{7}d_{6}d_{5}d_{4}d_{3}d_{2}d_{1}d_{0}$


ToRA v1 prototype

- 64 channels
- 4 gains, 4 shaping times
- Clock frequency: 200 MHz
- ToA and TtoPeak measurement
- Simple and linear ToT measurement
- Single external voltage reference
- Fully differential configuration and data transmission
- Die size : $2.6 \times 4.3 \text{ mm}^2$
- CMOS 65 nm technology
- Three power supplies (analog, digital, I/O) @ 1.2 V
- Power consumption $\sim\!600~\text{mW}$

(Very) preliminar test results

- Raw data : no gain and threshold calibration applied yet
- No data on peak detection and linear ToT available yet
- Maximum gain and peaking time

14 / 15

Conclusions

- ToRA is a new ASIC for the readout of MicroMegas detectors
- Custom developed analog FE
- Four gains: 2,6,8 and 12 mV/fC
- Four peaking times: 25,50,150 and 250 ns
- Provides ToA, peak position, ToT
- Digital BE from a silicon-proven design (ToASt)
- Submitted on May 2025, received on September 2025
- Status : under test
 - Digital interface ok
 - First results on analog behaviour
 - Still a lot of work for full characterization