
The G-RWELL technology

for LHCb Muon Detector at HL-LHC

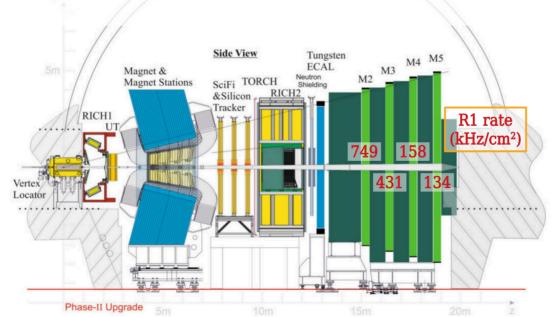
G. Bencivenni¹, F. Debernardis², Erika De Lucia¹, R. De Oliveira³, G. De Robertis², G. Felici¹, M. Gatta¹, F. Licciulli², F. Loddo², G. Morello¹, G. Papalino¹, E. Paoletti¹, M. Poli Lener¹, R. Tesauro¹

LNF - INFN ¹

Bari - INFN ²

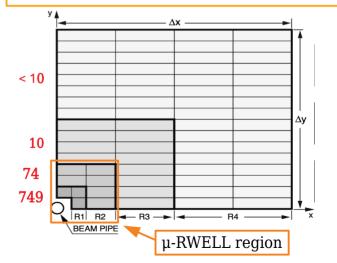
CERN³

6th DRD1 Collaboration Meeting, Oct. 7th 2025

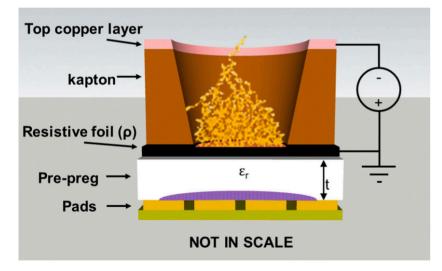

LHCb Upgrade II (Run5-6)

LHCb muon RUN 5-6 → Detector requirements:

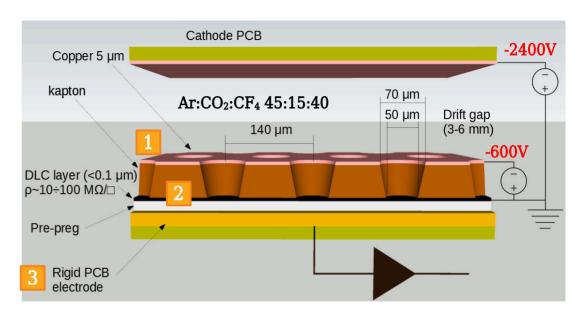
- Rate up to 1 MHz/cm² on detector single gap
- Rate up to **700kHz** for FEE channel
- Efficiency (4 gaps) > **98% within BX** (25 ns)
- Stability up to 1 C/cm² accumulated charge in 10y of operation


Detector size & quantity (4 gaps/chamber)

• R1 + R2 of M2-M5: **576 det.**, size 30x25 to 74x31 cm², **90 m² det**



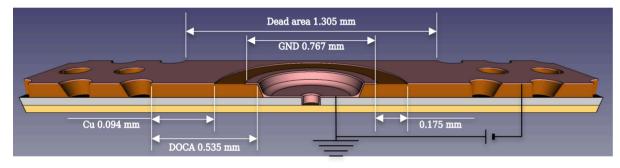
M2 station - max rate (kHz/cm²)

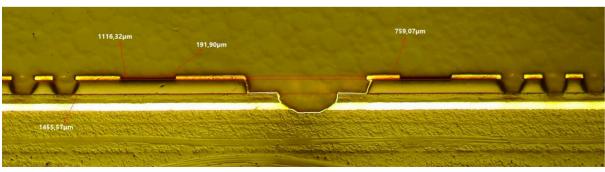


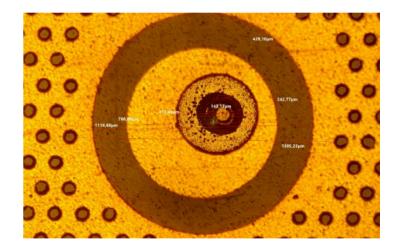
The µ-RWELL: detector scheme

The μ -RWELL is a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode. The core is the μ -RWELL_PCB, realized by coupling three different elements:

Applying a suitable voltage between the **top Cu-layer and the DLC** the WELL acts as a **multiplication channel for the ionization** produced in the conversion/drift gas gap.

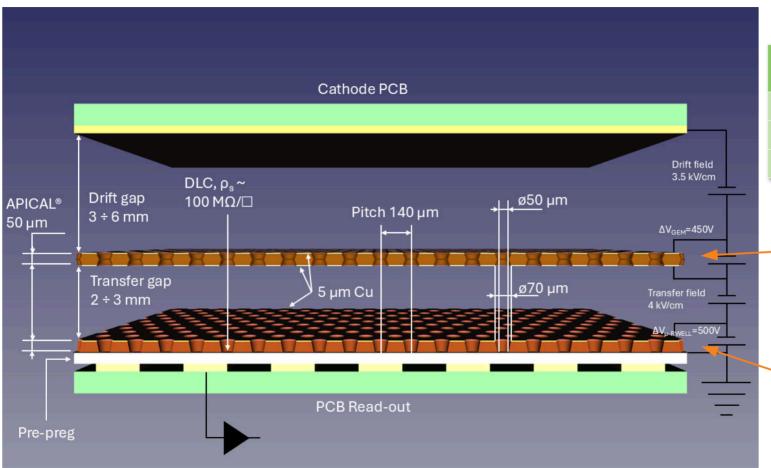



- a WELL patterned kapton foil acting as amplification stage (GEM-like)
- a resistive DLC layer (Diamond-Like-Carbon) for discharge suppression with surface resistivity $\sim 50 \div 100 \text{ M}\Omega/\Box$
- 3 a standard readout PCB


The PEP-DOT µ-RWELL

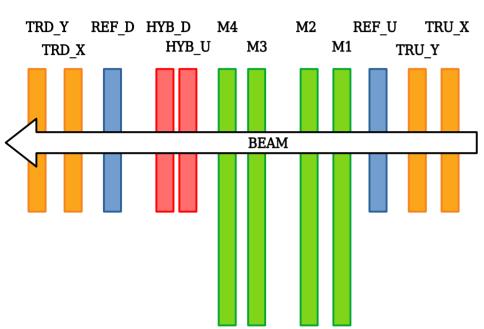
DLC-GND	Dead Area	GND width	Insulation	DOCA [mm]
pitch [mm]	[mm]	[mm]	gap [mm]	
9	1.3 (1.6%)	0.767	0.175	0.535

- The most recent high rate layout:
 Patterning-Etching-Plating
- The DLC ground connection is established by creating metalized vias from the top Cu layer through the DLC, down to the pad-readout of the PCB
- The dead area is ~2%



There have been a revival of "Silver Grid" high rate μ -RWELLs but the PEP-DOT still remains the favorite option due to the reduced dead area.

The G-RWELL


	Drift [mm]	Transfer [mm]		
2024	6	3		
2025	6	2		
LHCb U2	3	2		

GEM detector (preamplification)

 μ -RWELL detector (amplification)

2024 - Test Beam setup

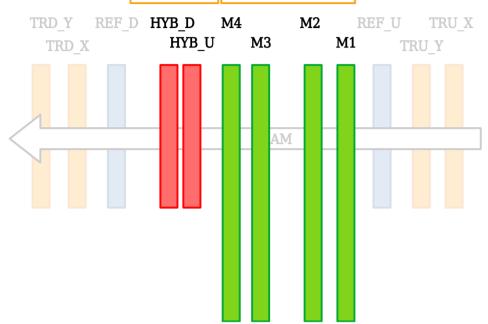
Trackers: 10×10cm² - 1.2mm strip R/O (Capacitive Sharing)

Reference: $10 \times 10 \text{cm}^2$ - $9 \times 9 \text{mm}^2$ pad R/O G-RWELL: $10 \times 10 \text{cm}^2$ - $9 \times 9 \text{mm}^2$ pad R/O

M2R1: 30×25cm², instrumented 15×13cm² - 9×9mm² pad R/O

TB area: PS-T10 w/ 5 GeV muons

Gas used: Ar/CO₂/CF₄ 45/15/40



A special dziękuję to INFN LNF, Rome2, and Bari LHCb groups for the support during the beam test.

FEE: **16 FATIC3** FEE boards (more info on FATIC3 and FATIC4 in L. Congedo's talk this week - <u>link</u>)

2024 - Test Beam setup

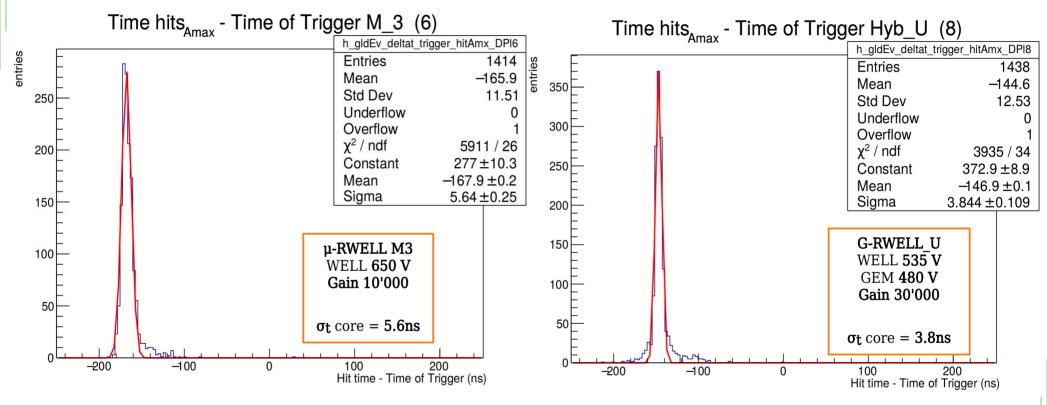
G-RWELL M2R1 μ-RWELL 30×10

Trackers: 10×10cm² - 1.2mm strip R/O (Capacitive Sharing) **Reference:** 10×10cm² - 9×9mm² pad R/O

G-RWELL: 10×10cm² - 9×9mm² pad R/O

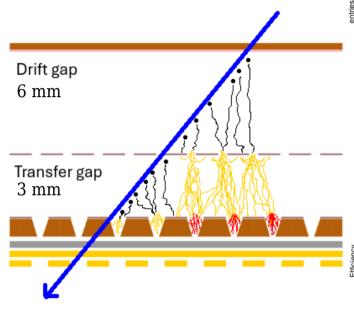
M2R1: 30×25cm², instrumented 15×13cm² - 9×9mm² pad R/O

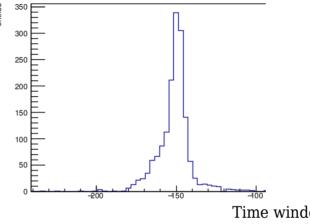
TB area: PS-T10 w/ 5 GeV muons

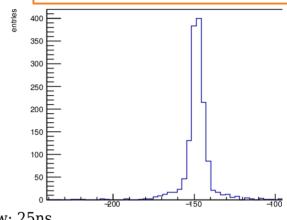

Gas used: Ar/CO₂/CF₄ 45/15/40

A special dziękuję to INFN LNF, Rome2, and Bari LHCb groups for the support during the beam test.

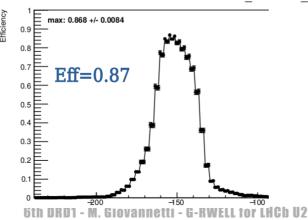
FEE: **16 FATIC3** FEE boards (more info on FATIC3 and FATIC4 in L. Congedo's talk this week - <u>link</u>)

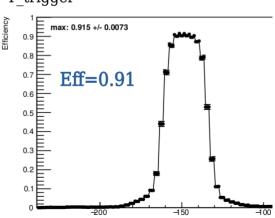

2024 - μ-RWELL vs G-RWELL – Time resolution



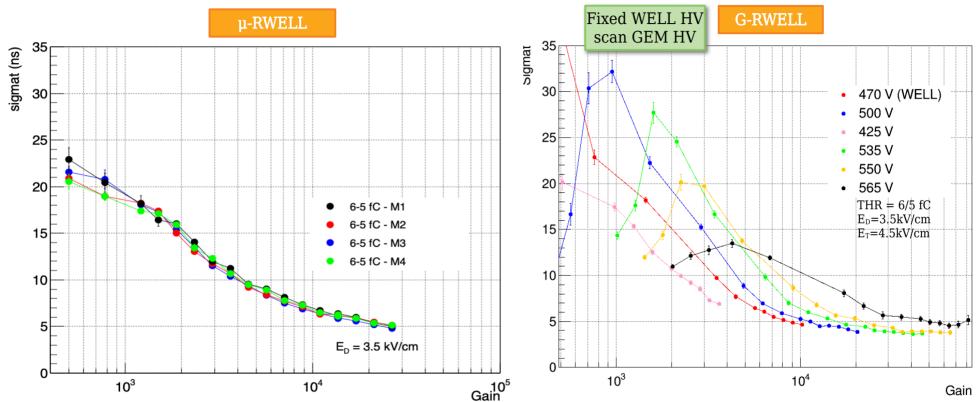

Time reference: one of the scintillator of the trigger (σ_t <1ns) σ_t : gauss fit core of the Δ_t distribution

G-RWELL – Bigap effect


WELL **565** (gain **2000**) GEM **460** (gain **25**) Total Gain **50'000** RUN_id 20241124_163532 WELL **535** (gain **1000**) GEM **510** (gain **50**) Gain **50'000** RUN id 20241124 182541

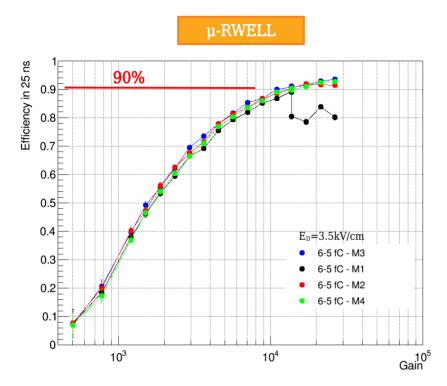


Time window: 25ns
T fastest hit - T trigger

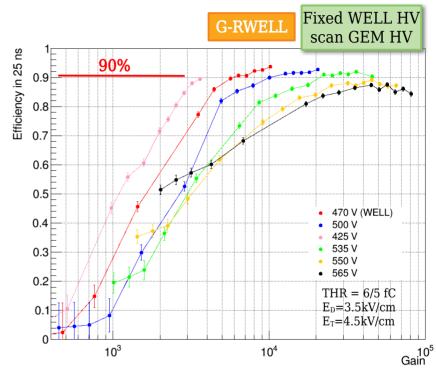


TDC sampling time: 3.125ns. Window **steps**: 1ns.

07/10/25

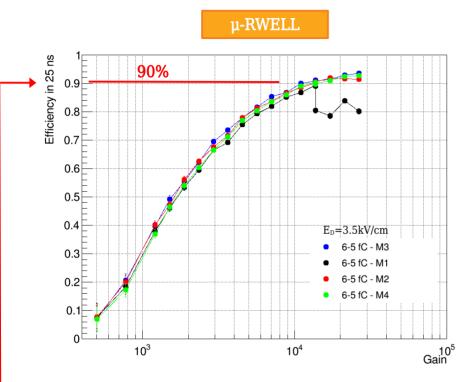

9

2024 - µ-RWELL vs G-RWELL — Time resolution [core]

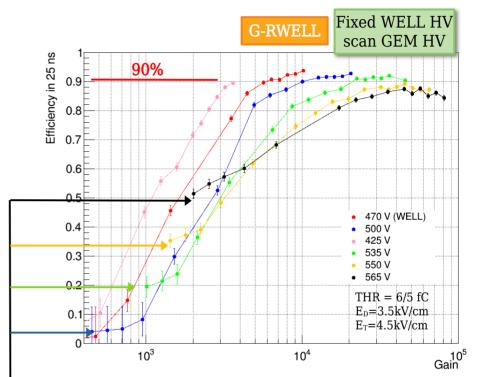


The G-RWELL demonstrates better time performance than μ -RWELL at the same gain, thanks to higher efficiency on the first cluster. For the same gas gain, differences varying HV WELL \rightarrow "Bigap effect"

2024 - µ-RWELL vs G-RWELL — Efficiency in 25ns

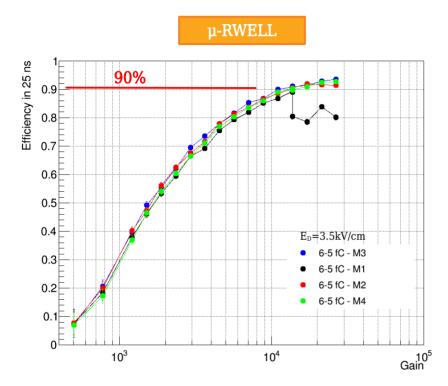


The best performance obtained for a $\mu\text{-RWELL}$ gain around 10^4 , close to the typical **max gain** of the detector.

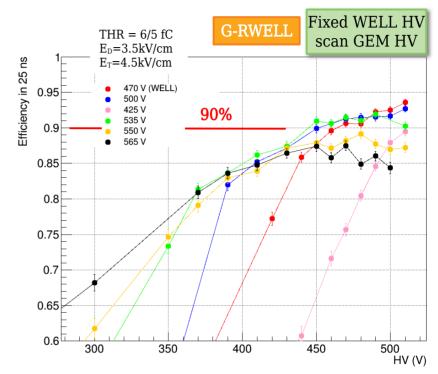

High gain curves have a lower plateau due to the "bigap" effect. The magnitude of this effect depends on the geometry of the detector (the transfer field and gap) and the FEE threshold.

2024 - µ-RWELL vs G-RWELL — Efficiency in 25ns

The best performance obtained for a μ -RWELL gain around 10^4 , close to the typical **max gain** of the detector.


Each LHCb station has 4 detectors (Majority 2over4 logic) **Eff(25ns)≥0.9** per single gap means **Eff(25ns)≥0.98** per station

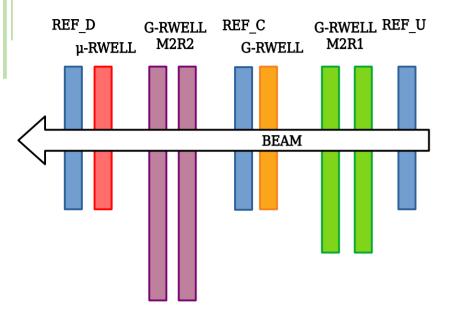
High gain curves have a lower plateau due to the "bigap" effect. The magnitude of this effect depends on the geometry of the detector (the transfer field and gap) and the FEE threshold.


The values for low gains should be the percentage of "bi-gap events". Nice catch Eraldo;)

2024 - µ-RWELL vs G-RWELL — Efficiency in 25ns

The best performance obtained for a μ -RWELL gain around 10^4 , close to the typical **max gain** of the detector.

Each LHCb station has 4 detectors (Majority 2over4 logic) **Eff(25ns)≥0.9** per single gap means **Eff(25ns)≥0.98** per station



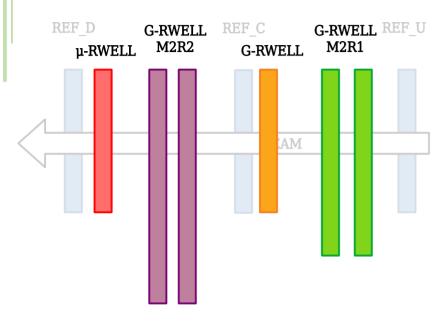
High gain curves have a lower plateau due to the "bigap" effect. The magnitude of this effect depends on the geometry of the detector (the transfer field and gap) and the FEE threshold.

Best performance:

• HV μ-RWELL = 500-535 V (gain 500-1000) HV GEM = 450 V (gain 20)

Next beam test: November 2025

Reference: 10×10cm² - 9×9mm² pad R/O


 μ -RWELL: 10×10 cm² - 9×9 mm² pad R/O

G-RWELL: 10×10cm² - 9×9mm² pad R/O - Transfer 3mm

M2R1: $30 \times 25 \text{cm}^2 - 9 \times 9 \text{mm}^2 \text{ pad R/O} - \text{Transfer 2mm}$ M2R2: $60 \times 25 \text{cm}^2 - 9 \times 9 \text{mm}^2 \text{ pad R/O} - \text{Transfer 2mm}$

TB area: PS-T10 w/ 5 GeV muons, FEE FATIC3

Next beam test: November 2025

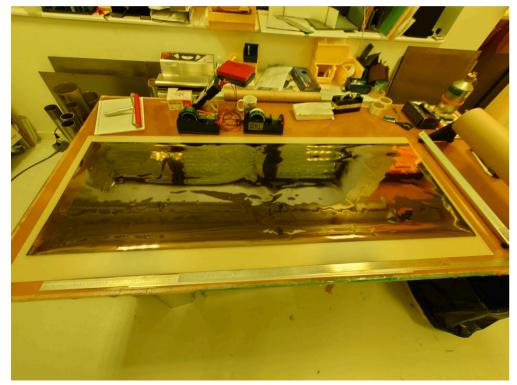
Reference: 10×10cm² - 9×9mm² pad R/O

 μ -RWELL: $10 \times 10 \text{cm}^2 - 9 \times 9 \text{mm}^2 \text{ pad R/O}$

G-RWELL: 10×10cm² - 9×9mm² pad R/O - Transfer 3mm

M2R1: $30 \times 25 \text{cm}^2 - 9 \times 9 \text{mm}^2 \text{ pad R/O} - \text{Transfer 2mm}$ M2R2: $60 \times 25 \text{cm}^2 - 9 \times 9 \text{mm}^2 \text{ pad R/O} - \text{Transfer 2mm}$

TB area: PS-T10 w/ 5 GeV muons, FEE FATIC3


Dziękuję to the MPT team and in particular to Alexis for his help

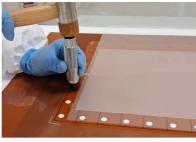
DLC foil production

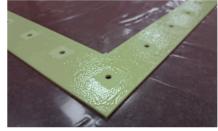
4 M2R2 foils, ρ = 170 ± 40 MΩ/□, type Kapton-Cu

Full report at the WP1 3rd Mini Workshop - Task 8

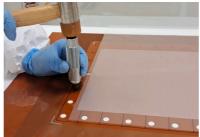
GEM gluing

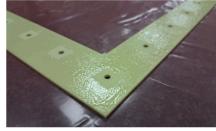
Quality control: testing the GEMs with the **MEGGER**

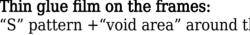

GEM gluing

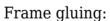

Quality control: testing the GEMs with the MEGGER

Thin glue film on the frames:
"S" pattern +"void area" around the holes, to prevent glue in the holes

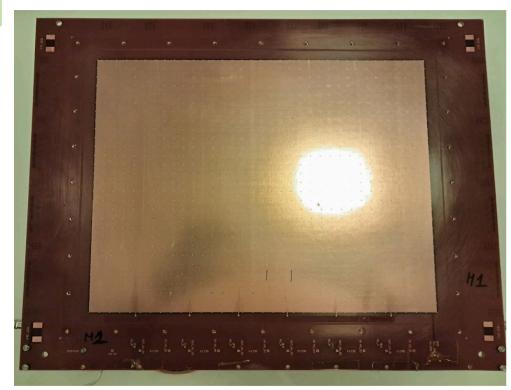

GEM gluing


Quality control: testing the GEMs with the MEGGER



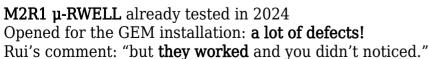


Thin glue film on the frames: "S" pattern +"void area" around the holes, to prevent glue in the holes




- the GEM is stretched
- the frame is put on top
- pressure is applied evenly with the help of a steel plate

μ-RWELL preparation – 30x25 M2R1



M2R1 μ -RWELL already tested in 2024 Opened for the GEM installation: a lot of defects!

Bonus: 30x25 defects

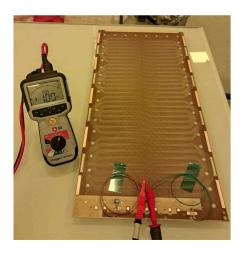
M2R1 have been used as **stress test of cleaning** (water, soft/hard chemistry) and **conditioning** (hot cleaning), in order to gain knowledge for the M2R2 production (and μ -RWELLs in general).

μ-RWELL preparation – 60x25 M2R1

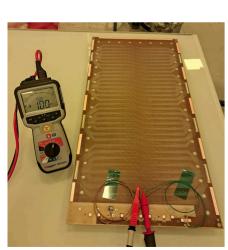
GEM 2mm frame o-ring gluing

Low pressure cleaning with DI water

Water/Chemical cleaning possible also if "Cathode-Frame-GEM-Frame" stack is glued:


- \rightarrow easier handling/ammebly
- → more dust protection for the GEM
 6th DRD1 M. Giovannetti G-RWELL for LHCb U2

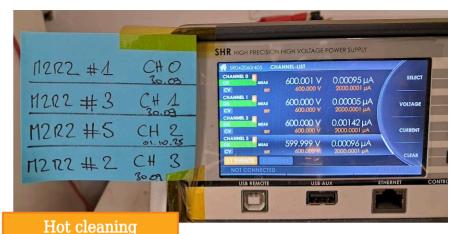
GEM + μ-RWELL assembly


Megger Test to GEM and RWELL.

Assembly order: $CAT \rightarrow GEM \rightarrow WELL$ In order to prevent dust for entering the μ -RWELL (e.g. from bolt-FR4 friction).

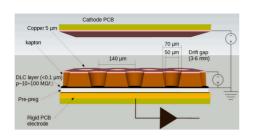
Rui: after the installation, the GEM shouldn't be tested: a possible spark could vaporize metal on top of the μ -RWELL: this can only be recovered with chemical cleaning.

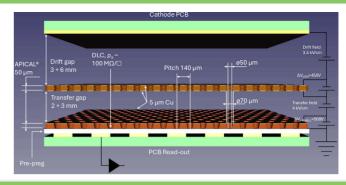
GEM + μ-RWELL assembly



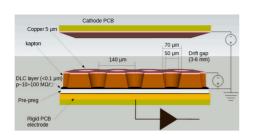
Megger Test to GEM and RWELL.

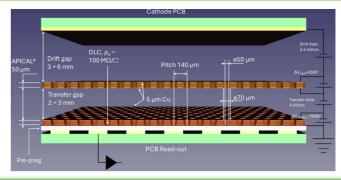
Assembly order: $CAT \rightarrow GEM \rightarrow WELL$ In order to prevent dust for entering the μ -RWELL (e.g. from bolt-FR4 friction).


Rui: after the installation, the GEM shouldn't be tested: a possible spark could vaporize metal on top of the μ -RWELL: this can only be recovered with chemical cleaning.



- **Fast power supply**: refresh rate >1Hz in order to notice sparks
- High limitation: >1mA the spark should not be suppressed in order to fully burn the defects
- High temperature in order to remove moisture
 - Detector w/ cathode? <50°, because otherwise the Kapton will outgas and the deposits will remains inside
- Start at 250V
 - Wait for current <1nA
- Increase 50V, wait again
- From 600V, decrease the steps to 20V
- Sometimes if the detector response is bad, you have to step back


A quick summary table



	μ-RWELL	G-RWELL				
Application	Standard MPGD - the everyday use	Very demanding scenarios in which extremely high gagain is needed: e.g. time resolution <5ns, 2D uTPC reconstruction				
Complexity: Production	$\begin{tabular}{ll} \textbf{Mid:} low rate μ-RWELL are standards, high-rate ones need a bit more care \end{tabular}$	Low: GEMs are the MPT-Workshop "best sell item"				
Complexity: Assembly	None: in principle they are ready to use after delivery from the MPT	Mid: it's an additional manufacture step, they need to be stretched/glued (more manpower)				
Stability	Resistive: stable by design Single stage: operational gain 6-8k	Non-resistive: permanent damage Multi-stage: gain up to 100k				
Timing	Down to 5ns	Down to 3.8ns bigap effect → possible source of stress for the GEM				
Tracking	G. Bencivenni et al., 2020 <i>JINST</i> 16 P08036	See Elena's talk on thursday				
Scalability	As large as the DLC foil (for the CID 170x60cm²)	As large as the μ-RWELL				

A quick summary table

	μ-RWELL	G-RWELL			
Application	Standard MPGD - the everyday use	Very demanding scenarios in which extremely high gas gain is needed: e.g. time resolution <5ns, 2D uTPC reconstruction			
Complexity: Production	$\begin{tabular}{ll} \textbf{Mid:} low rate μ-RWELL are standards, high-rate ones need a bit more care \end{tabular}$	Low: GEMs are the MPT-Workshop "best sell item"			
Complexity: Assembly	None: in principle they are ready to use after delivery from the MPT	Mid: it's an additional manufacture step, they need to be stretched/glued (more manpower)			
Stability	Resistive: stable by design Single stage: operational gain 6-8k	Non-resistive: permanent damage Multi-stage: gain up to 100k			
Timing	Down to 5ns	Down to 3.8ns bigap effect → possible source of stress for the GEM			
Tracking	G. Bencivenni et al., 2020 <i>JINST</i> 16 P08036	See Elena's talk on thursday			
Scalability	As large as the DLC foil (for the CID 170x60cm ²)	As large as the μ-RWELL			

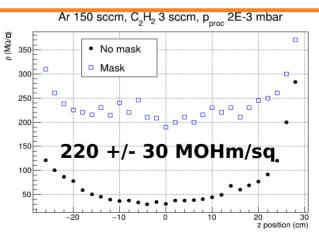
Spare

CERN-INFN DLC (CID) sputtering machine

The **CID** (CERN-INFN-DLC) sputtering machine, a **joint project between CERN and INFN.** It is used for preparing the **base material for DLC-based detectors**. And various deposition over electrodes (Cu, Al, ¹⁰B₄C,...). The potential of the DLC sputtering machine is:

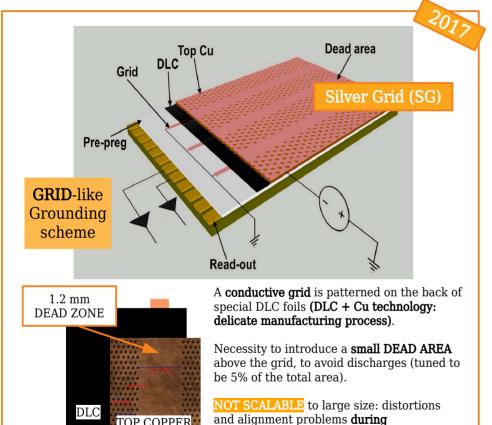
- Flexible substrates up to 1.7×0.6m²
- Rigid substrates up to 0.2×0.6m²

In 2023, the activity on CID focused on the tuning of the machine on small foils: good results in terms of reproducibility and uniformity.


In 2024, the goal has been the sputtering of large foils:

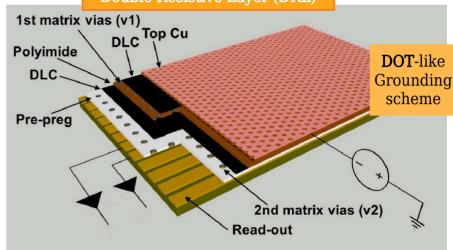
2024 highlights

- **DLC+Cu** sputtering on $0.8 \times 0.6 \text{m}^2$ successfully done (May/June 2024)
- DLC on 1.7×0.6m² large 0/50/0 Apical foils successfully done (June 2024)
- DLC on 1.7×0.6m² large 5/50/0 Apical foils successfully done (July 2024)



Many thanks to the CID team!!

The High Rate layouts



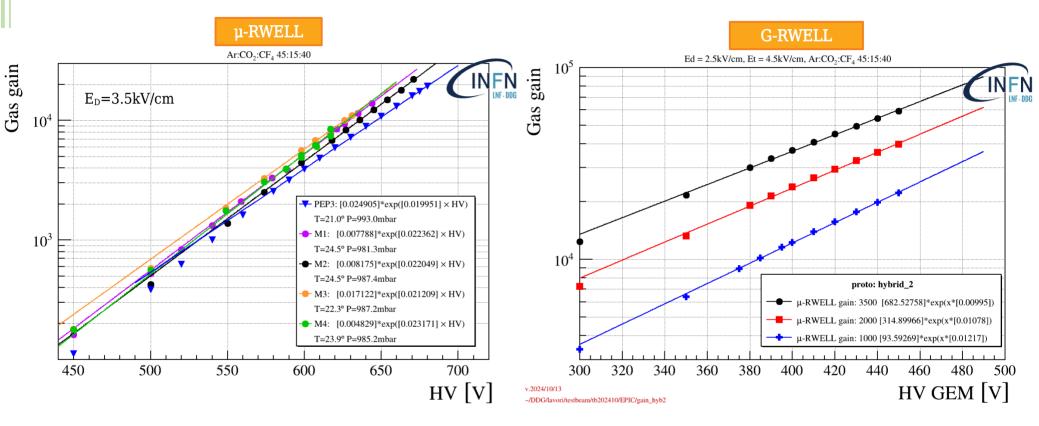
manufacturing.

IS POSSIBLE to check the resistance of the

layer after the detector is built

Double Resistive Layer (DRL)

Based on a **3-D** current evacuation scheme: Two stacked resistive layer connected through a **matrix of conductive vias,** grounded through a further matrix of vias to the underlying readout electrodes.


MORE COMPLEX to buid **than SG** but reliable (for now only 10x10 prototypes).

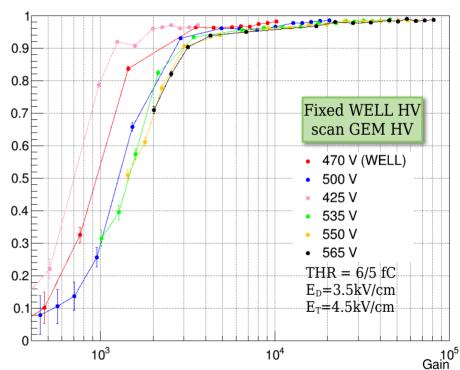
NOT POSSIBLE to check the resistance of the two layers after the manifacture.

Conductive Grid

Under the DLC

Gas gain measurement – w/ X-rays

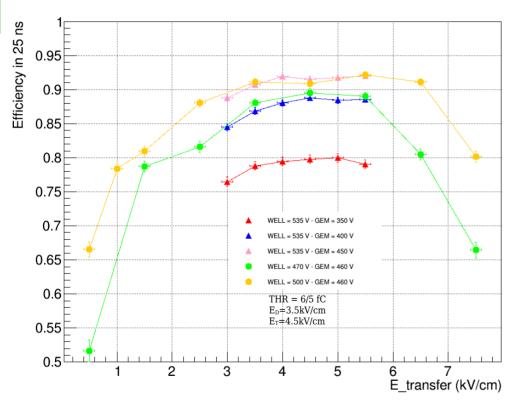
A very stable detector: it doesn't show any hint of instabilities even at 60k. During the '24 beam test we have data points even at 100k.


2024 - μ-RWELL vs G-RWELL — Efficiency

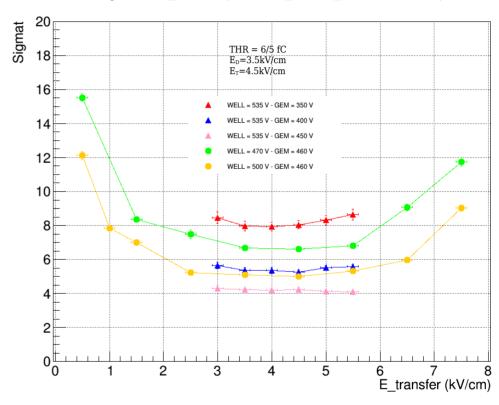
μ-RWELL

G-RWELL

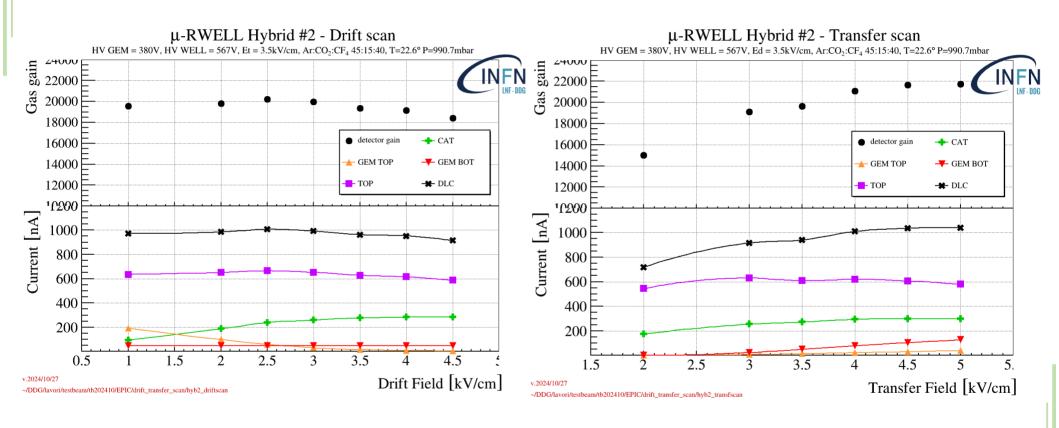
M1 behavior will be more clear during the second part of the talk.

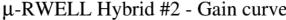


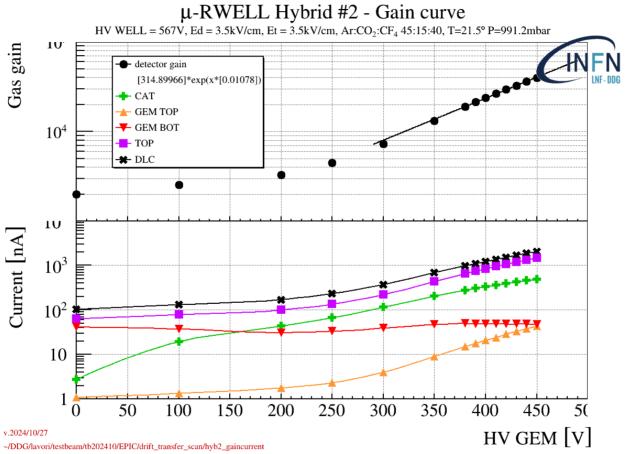
A plateau >98% is reached for a gas gain above 8000. The gain for PINK (WELL 425) and RED (WELL 470) is extrapolated, so the curves doesn't overlap likely for this reason.


Transfer scan Hybrid

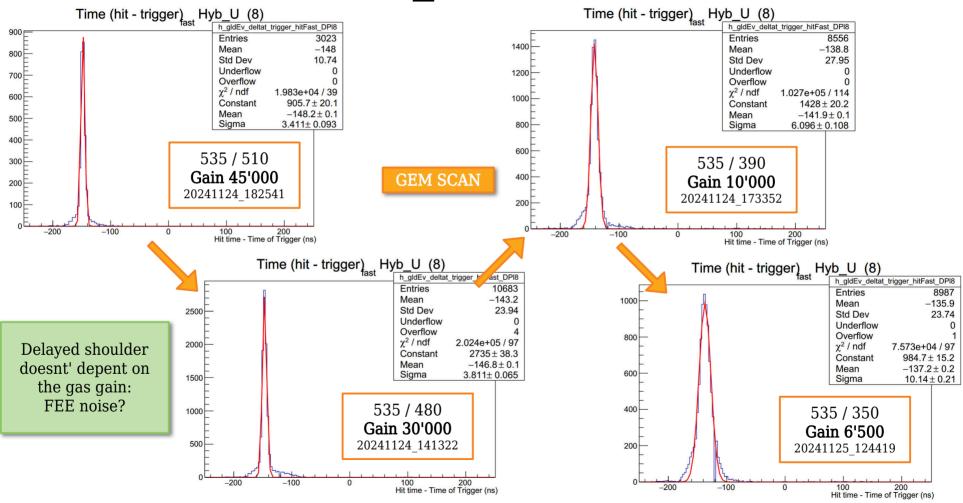
HYB_U


Efficiency in 25 ns vs E_transfer (Thr = 6fC_5fC - E_drift = 3.5 kV/cm)

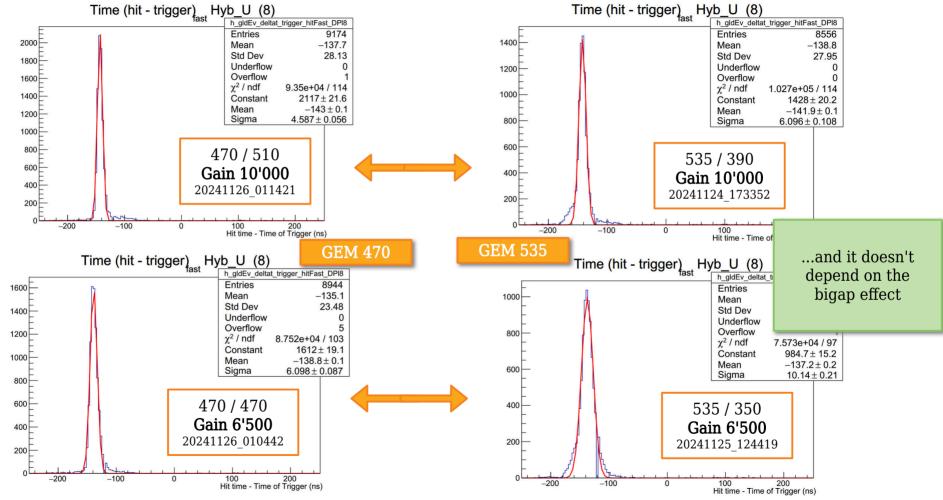

Sigmat vs E_transfer (Thr = 6fC_5fC - E_drift = 3.5 kV/cm)

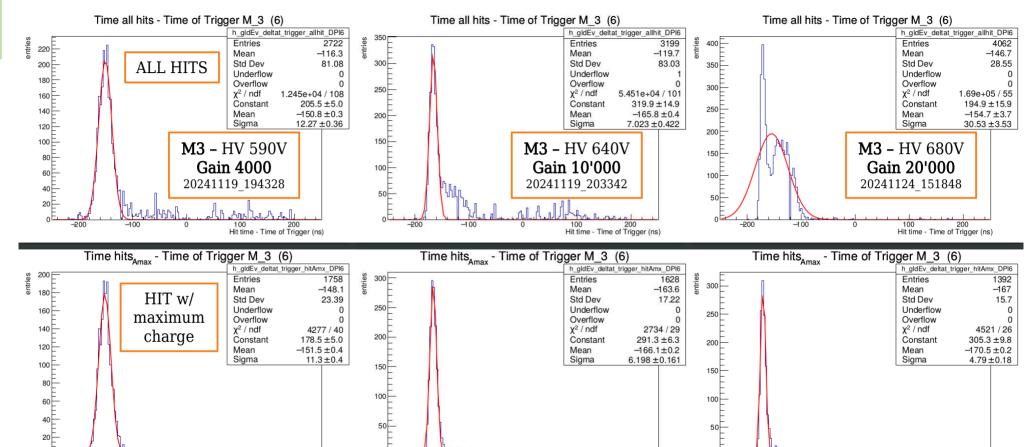


Hybrid – **Ed Et scan**



Hybrid – gas gain




Time of Fastest Hits – HYB_U – HV scan

Time of Fastest Hits – HYB_U – biwell scan

Time of all hits - M2R1

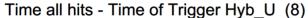
-200

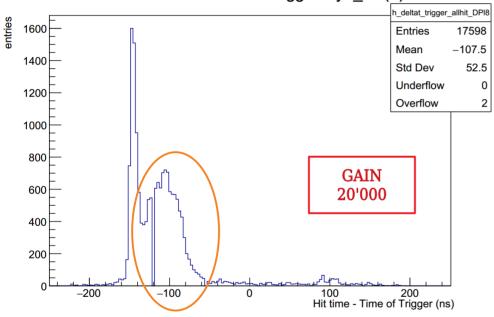
-100

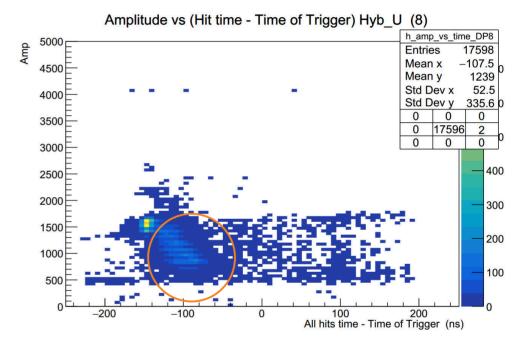
Hit time - Time of Trigger (ns)

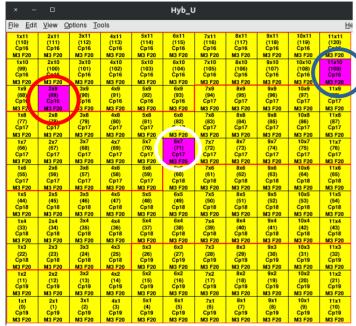
-200

-100

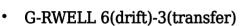

-200


Hit time - Time of Trigger (ns)


-100


Hit time - Time of Trigger (ns)

Delayed events - 50ns - T vs Q

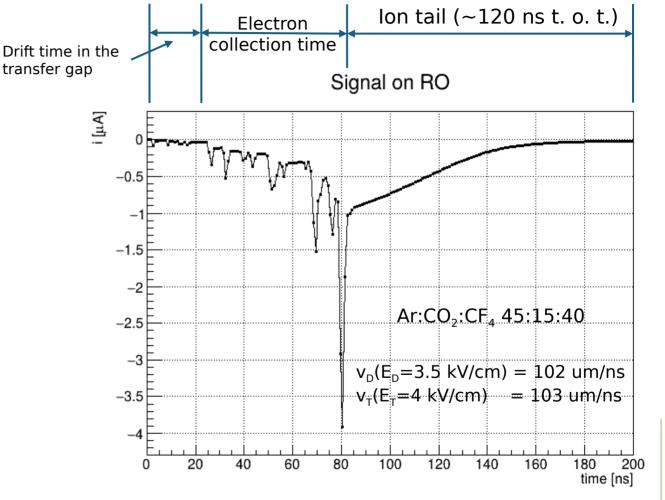

RED: good
BLUE: delay

WHITE: double delay

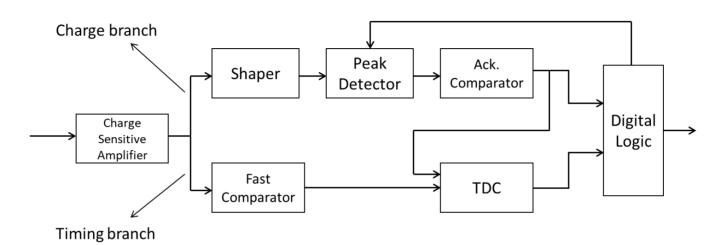
```
REF_U: 2024-12-04 2024-12-04 2024-12-04 DDGStyleLi hyb glovannett glovannett
```

					Hyb_U					
ile <u>E</u> dit	<u>V</u> iew <u>O</u>	ptions <u>T</u> o	ols							
1x11	2x11	3x11	4x11	5x11	6x11	7x11	8x11	9x11	10x11	11x11
(110)	(111)	(112)	(113)	(114)	(115)	(116)	(117)	(118)	(119)	(120)
Cp16	Cp16	Cp16	Cp16	Cp16	Cp16	Cp16	Cp16	Cp16	Cp16	Cp16
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
1x10	2x10	3x10	4x10	5x10	6x10	7x10	8x10	9x10	10x10	11x10
(99) Cp16	(100) Cp16	(101) Cp16	(102) Cp16	(103) Cp16	(104) Cp16	(105) Cp16	(106) Cp16	(107) Cp16	(108) Cp16	(109) Cp16
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
1x9	2x9	3x9	4x9	5x9	6x9	7x9	8x9	9x9	10x9	11x9
(88)	(89)	(90)	(91)	(92)	(93)	(94)	(95)	(96)	(97)	(98)
Cp16	Cp16	Cp16	Cp16	Cp16	Cp16	Cp17	Cp17	Cp17	Cp17	Cp17
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
1x8	2x8	3x8	4x8	5x8	6x8	7x8	8x8	9x8	10x8	11x8
(77)	(78)	(79)	(80)	(81)	(82)	(83)	(84)	(85)	(86)	(87)
Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
1x7	2x7	3x7	4x7	5x7	6x7	7x7	8x7	9x7	10x7	11x7
(66)	(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)	(75)	(76)
Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17	Cp17
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
1x6	2x6	3x6	4x6	5x6	6x6	7x6	8x6	9x6	10x6	11x6
(55)	(56)	(57)	(58)	(59)	(60)	(61)	(62)	(63)	(64)	(65)
P=17	Cp17	Cp17	Cp17	Cp17	Cp18	Cp18	Cp18	Cp18	Cp18	Cp18
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
1x5	2x5	3x5	4x5	5x5	6x5	7x5	8x5	9x5	10x5	11x5
(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)
Cp18	Cp18	Cp18	Cp18	Cp18	Cp18	Cp18	Cp18	Cp18	Cp18	Cp18
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
144	2x4	3x4	4x4	5x4	6x4	7x4	8x4	9x4	10x4	11x4
(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)
Cp18	Cp18	Cp18	Cp18	Cp18	Cp18		Cp18		Cp18	Cn18
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20		M3 F20	M3 F20	M3 F20	M3 F20	₁413 F2tı
1x3	2x3	3x3	4x3	5x3	6x3	7x3	8x3	9x3	10x3	11x3
(22)	(23)	(24)	(25)	(26)	(27 Cp1	(28)	(29)	(30)	(31)	(32)
Cp18 M3 F20	Cp18 M3 F20	Cp18 M3 F20	Cp18 M3 F20	Cp19 M3 F20	M3 F2	Cp19 M3 F20	Cp1 13 F2	Cp19 M3 F20	Cp19 43 F20	Cp19 M3 F20
	2x2	3x2	4x2	5x2	6x2		8x2	9x2	10x2	
1x2	(12)	(13)		(15)		7x2		982		11x2
(11) Cp19	(12) Cp19	(13) Cp19	(14) Cp19	(15) Cp19	(16) Cp19	Cp19	(18) Cp19	Cp19	(20) Cp19	Cp19
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20
	2x1	3x1		5x1	6x1	7x1	8x1	9x1	10x1	
1x1 (0)	(1)	(2)	4x1 (3)	(4)	(5)	(6)	(7)	(8)	(9)	11x1 (10)
Cp19	Cp19	Cp19	Cp19	Cp19	Cp19	Cp19	Cp19	Cp19	Cp19	Cp19
M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20	M3 F20

Garfield++ signal simulations


- Ionisation from a **5 GeV muon** track
- tools: COMSOL 6.3 + GARFIELD++
- $E_{drift} = 3.5 \text{ kV/cm}$
- $\Delta V_{GEM} = 450 \text{ V}$
- $E_{transf} = 4 \text{ kV/cm}$
- $\Delta V_{u-RWELL} = 550 \text{ V}$

Expected collection time: 60ns Expected ion tail: 120ns


→ total induction: ~200ns

NO FEE implemented (filters, shaping, or amplification)

Dziękuję Djunes for your kind help, it was the spark that we needed

FATIC3 block diagram

Preamplifier features:

- CSA operation mode
- Input signal polarity: positive & negative
- Recovery time: adjustable

CSA mode:

- Programmable Gain: 10 mV/fC ÷ 50 mV/fC
- Peaking time: 25 ns, 50 ns, 75 ns, 100 ns

Timing branch:

- ✓ Measures the arrival time of the input signal
- ✓ Time jitter: 400 ps @ 1 fC & 15 pF (Fast Timing MPGD)

Charge branch:

- ✓ Acknowledgment of the input signal
- ✓ Charge measurement: dynamic range > 50 fC, programmable charge resolution

Next steps

2026

- **Beam test with FATIC4** (dead time 100ns) at PSI with continuos high rate beam (1MHz/cm²)
- PCB optimisation: noise and crosstalk suppression

2027

- M2R1 Proto0 construction with integration of:
 - HV connections (filters, distribution)
 - FEE (shielding, concentrator)
 - Gas (inlet/outlet)

2028

- **CERN MoU** for production
- Production of the base material with the CERN-INFN DLC machine
 - See more at (link)

2029-'32

- **Detector production** (more than 600 units, 90m²)
- Quality control