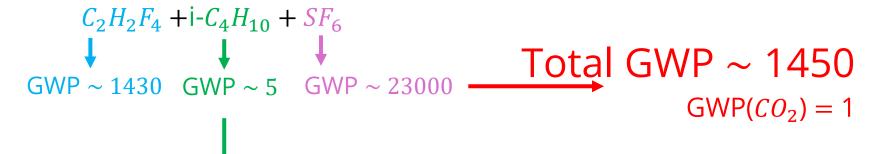


Replacement of the SF_6 in the RPC detector

Giorgia Proto on behalf of the MPI group
6° DRD1 Collaboration Meeting
Warsaw
6-10 October 2025



Search of an eco friendly gas mixture

The standard gas mixture has a high Global Warming Potential (GWP)

European union regulation have imposed a progressive phase down in the production and use of the F-gases, like $C_2H_2F_4$ and SF_6 in industry

Reduction of the availability

Increase of the cost

These gases represent the biggest contribution of the CERN particle detectors greenhouse gas emission

Search for an alternative gas mixture

Performance comparable to those of the standard gas (efficiency, current, rate capability, time resolution...)
Low GWP

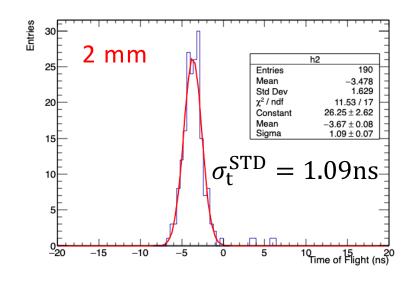
Longevity of the detector for collider experiments

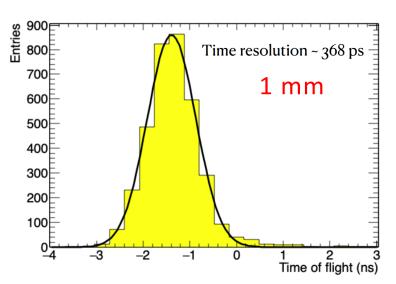
Eco-gases in ATLAS during HL-LHC

During HL-LHC there will be two types of ATLAS RPC : 2 mm (legacy) and 1 mm (upgrade) thick

1) Performance

High efficiency (>90%) for both options (more critical for 1 mm)


Time resolution (~ 1 ns for 2 mm gas gap and ~ 400 ps for 1 mm gas gap)


2) Rate capability:

Average rate expected during HL-LHC in ATLAS RPC : 200 Hz/cm² Hottest spot during HL-LHC in ATLAS RPC : 500 Hz/cm²

3) Aging

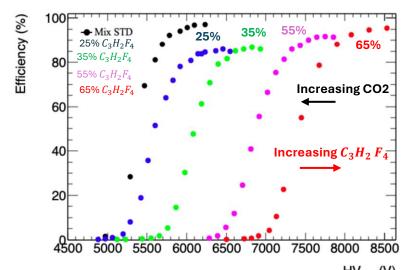
Low total charge delivered within the gas →low current Low Fluorine radicals production

Substitution of the $C_2H_2F_4$

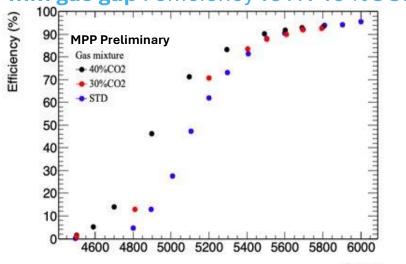
Largest contribution to the GWP of the standard gas due to the Tetrafluoroethane (TFE) because it is the main gas component (94.7% for a total GWP ~ 1390)

1) Substitute the $C_2H_2F_4$ with an environment friendly gas mixture:

$$\frac{CO_2/C_3H_2F_4}{CO_2/C_3H_2F_4} + i - C_4H_{10} + 1\% SF_6 \longrightarrow GWP \sim 200$$


- 1. Reduction of the GWP
- 2. Larger production of fluorine molecules (possible faster aging)
- 3. Concentration of $C_3H_2F_4$ strongly depends on the gas gap thickness
- 2) Reduction of the $C_2H_2F_4$ concentration introducing *CO*₂ (ATLAS intermediate):

$$CO_2/C_2H_2F_4 + i-C_4H_{10} + 1\% SF_6 \longrightarrow GWP \sim (1017-1162)$$


- 1. No large impact expected on detector longevity in terms of fluorine production
- 2. Small reduction of the GWP

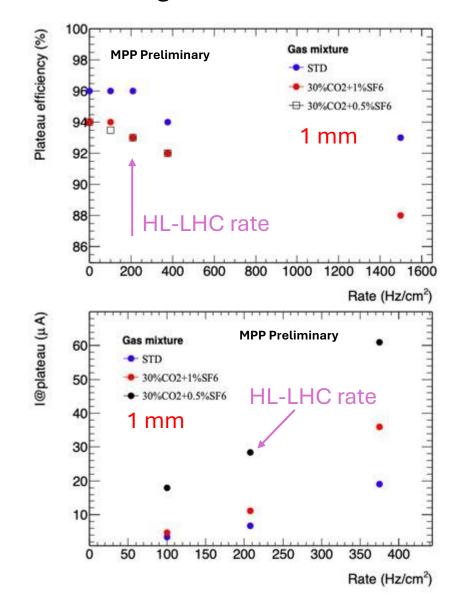
Both cases → higher current wrt standard gas (1.5-1.7 times higher)

1 mm gas gap : efficiency vs HV vs $%C_3H_2F_4$

1 mm gas gap: efficiency vs HV vs %CO2

The impact of SF_6

The SF_6 is the molecule with the largest GWP in the standard gas (22900)

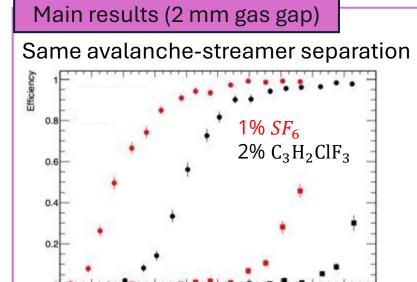

All the alternatives to the $C_2H_2F_4$ require an increase in the SF_6 concentration in order to avoid streamers \rightarrow higher GWP

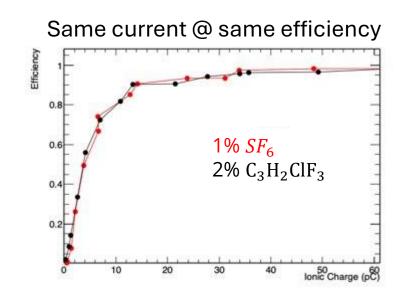
What happen if we reduce the SF_6 concentration in the ATLAS intermediate solution(currently used in ATLAS)?

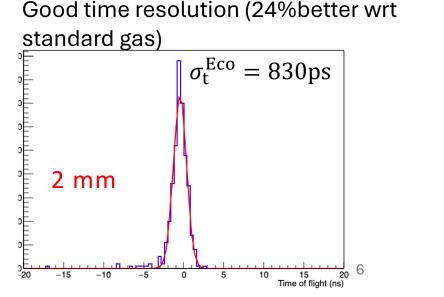
$$CO_2/C_2H_2F_4 + i-C_4H_{10} + 0.5\% SF_6$$

Reduction of the GWP (1041 vs 1164)

Large increase of the currents in 1 mm gap due to transition (high-charge) events and/or streamers


Substitution of the SF_6




Possibility to replace the highest GWP molecule, the SF_6 , with an environment friendly gas: the $CL \sim F$ Chlorotrifluoropropene ($C_3H_2ClF_3$, **GWP** ~ **1**)

 $CO_2/C_3H_2F_4 + i-C_4H_{10} + C_3H_2ClF_3 \longrightarrow$

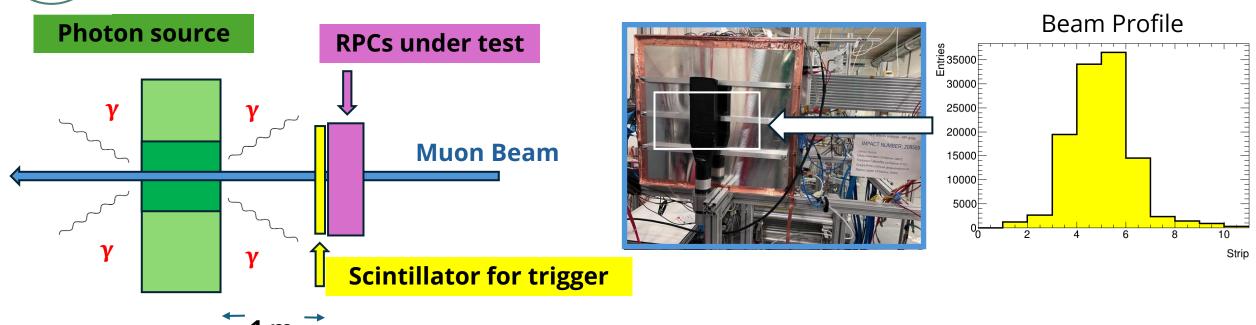
Possibility to operate the RPC with a <u>totally</u> environmentfriendly gas mixture (see <u>here</u>) GWP ~ 10 (100 times less than the standard gas!!)

Certification of $C_3H_2ClF_3$ for short-term applications

- 1. Early appearance of streamers/transition events \rightarrow high current and low rate capability
- 2. High current under irradiation \rightarrow aging and low rate capability
- 3. Long term effects → Study of the behaviour of the gas after integrating the corresponding HL-LHC charge
- 1. Decouple the contribution of the C₃H₂ClF₃ from the other gases

$$C_2H_2F_4 + i-C_4H_{10} + C_3H_2ClF_3$$
 The behaviour of $C_2H_2F_4$ Any of the effect cited above due to $C_3H_2ClF_3$

2. Application to ATLAS intermediate gas mixture


$$CO_2/C_2H_2F_4 + i-C_4H_{10} + C_3H_2ClF_3$$

- Opportunity to start to replace the SF₆
- Possibility to reduce the $C_2H_2F_4$ by increasing the $C_3H_2ClF_3$ with an improvement of the GWP

Set-up at the Gamma Irradiation Facility (GIF++)

Three 1 mm gas gap RPCs

1.4 mm electrode thickness
 Amplified signal with
 Cardarelli FE electronics
(transimpedence amplifier)

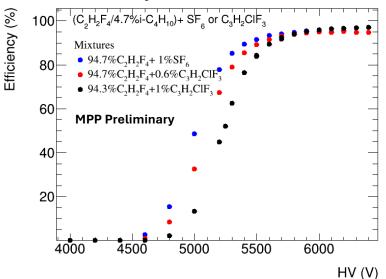
Discriminator (4 mV thr)

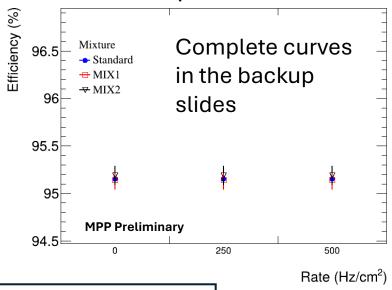
TDC CAEN
100 ps (LSB)400 ps effective
resolution

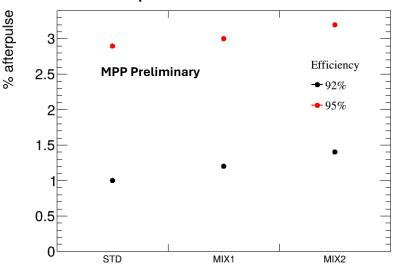
Results (I)

Mixtures

94.7%
$$C_2H_2F_4$$
 +4.7%i- C_4H_{10} + 0.6% $C_3H_2ClF_3$
94.3% $C_2H_2F_4$ +4.7%i- C_4H_{10} + 1% $C_3H_2ClF_3$


Efficiency and currents in presence of γ -irradiation in comparison with the standard gas

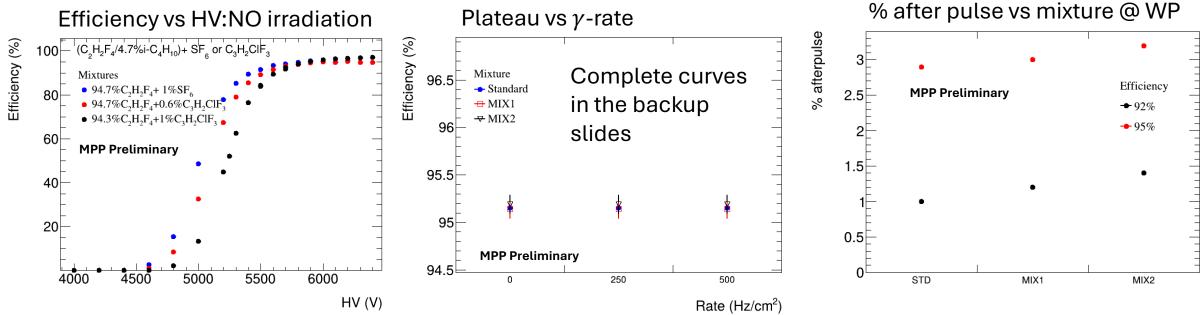

Study of the efficiency


Efficiency vs HV:NO irradiation

Plateau vs γ -rate

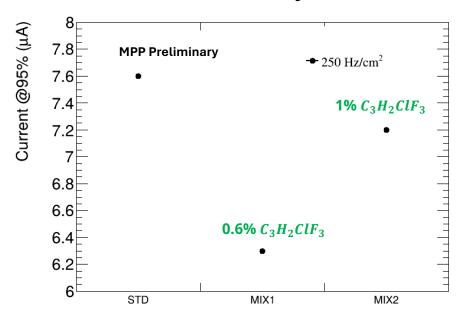
% after pulse vs mixture @ WP

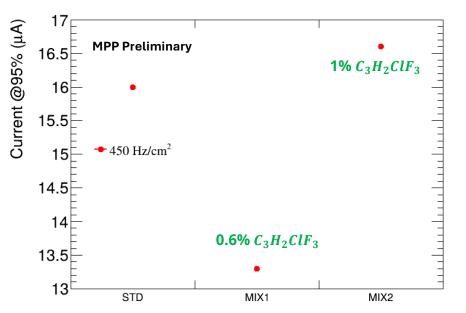
- 1. MIX1: $94.7\%C_2H_2F_4/4.7\%i-C_4H_{10}/\mathbf{0.6\%}$ $C_3H_2ClF_3$
- 2. MIX2 :94.3% $C_2H_2F_4/4.7\%$ i- $C_4H_{10}/1\%$ $C_3H_2ClF_3$
- 1. Same efficiency around 95%
- 2. Working point shifted by 100 V ($0.6\% C_3H_2ClF_3$) and 200 V ($1\% C_3H_2ClF_3$) wrt the standard gas
- 3. No efficiency loss under irradiation → Same rate capability up to 448 Hz /cm²


After pulse = number of multiple hits on the same strip

1. Number of after pulses of MIX1 (0.6% $C_3H_2ClF_3$) and MIX2 (1% $C_3H_2ClF_3$) consistent with the standard gas (at the same efficiency)

Study of the efficiency


The $C_3H_2ClF_3$ shows the same behaviour of the SF_6 with no impact on the rate capability



Results: Comparison at 95% efficiency

Currents at 95% efficiency at different irradiation : no irradiation, 235 Hz/cm² and 448 Hz/cm²

The currents at the WP are at the same order of magnitude up to $448~Hz/cm^2$ (slightly better in MIX1)

The $C_3H_2ClF_3$ shows the same behaviour of the SF_6 with no impact in the detector performance

Results (II)

Mixtures:

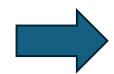
$$(30\% CO_2/4.7\% i-C_4H_{10}) +$$

$$64.3\%C_2H_2F_4 + 1\%C_3H_2ClF_3$$

$$63.3\%C_2H_2F_4 + 2\%C_3H_2ClF_3$$

$$62.3\%C_2H_2F_4 + 3\%C_3H_2ClF_3$$

$$61.3\%C_2H_2F_4 + 4\%C_3H_2ClF_3$$


Mixtures:

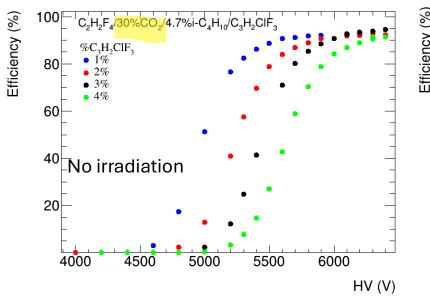
$$(40\% CO_2/4.7\% i-C_4H_{10}) +$$

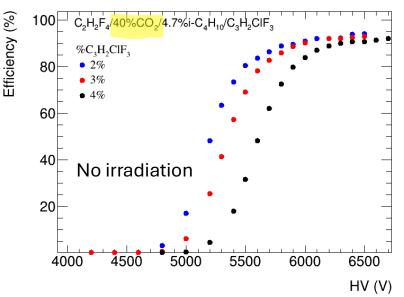
$$53.3\%C_2H_2F_4 + 2\%C_3H_2ClF_3$$

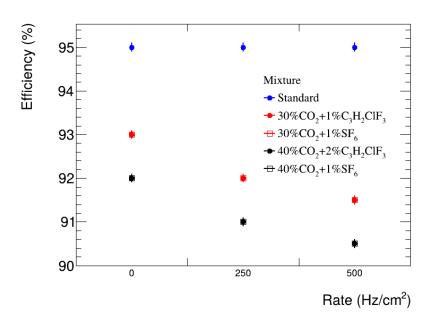
 $52.3\%C_2H_2F_4 + 3\%C_3H_2ClF_3$
 $51.3\%C_2H_2F_4 + 4\%C_3H_2ClF_3$

Efficiency and currents in presence of γ -irradiation in comparison with:

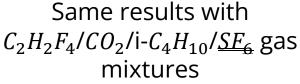
- standard gas
- $C_2H_2F_4/CO_2/i-C_4H_{10}/1\%SF_6$
- $C_2H_2F_4/CO_2/i-C_4H_{10}/\underline{0.5\%SF_6}$


Direct comparison with SF_6




$C_2H_2F_2/CO_2/i-C_4H_{10}/C_3H_2ClF_3$:

Efficiency

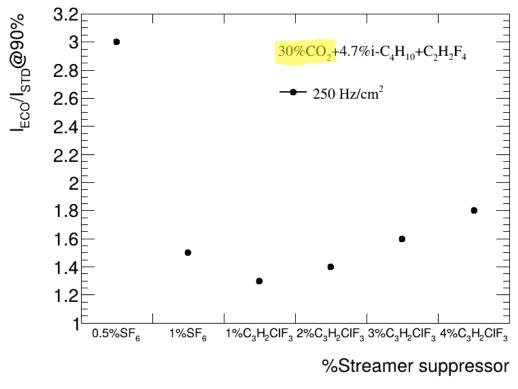


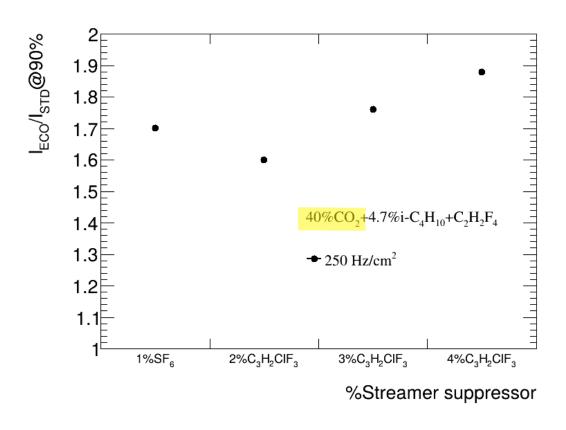
plateau efficiency of the standard gas \sim 3% higher wrt the mixtures containing CO_2

Efficiency drop under irradiation:

1) 253 Hz/ cm^2 : 0% for the standard gas, 1% for the other mixtures

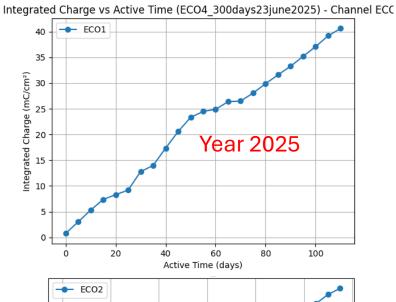
2) 448 Hz/ cm^2 : 0% for the standard gas, 2% for the other mixtures

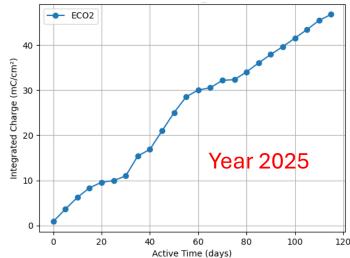

(<u>Nucl.Instrum.Meth.A</u> 1066 (202 4) 169580)


The $C_3H_2ClF_3$ shows the same behaviour of the SF_6 with no impact in the efficiency

SF_6 vs C_3 H_2 ClF_3 : Currents

The currents are at the same order of magnitude and significantly lower wrt the 0.5% SF_6 case


The $C_3H_2ClF_3$ shows the same behaviour of the SF_6 with no impact in the current



Aging status and plan

2 prototypes in aging with the gas mixture : $94.7\%C_2H_2F_4/4.7\%$ i- $C_4H_{10}/0.6\%$ $C_3H_2ClF_3$

The detectors are at 90% efficiency and the current over time is monitored under γ -irradiation

Integrated charge during **2024** (20 effective days) ~ 8.5 mC/cm² (ECO1) and 9.5 mC/cm² (ECO2)

Integrated charge (2024+2025) in ~100 effective days ~ 60 mC/cm²

Target ~ 178 mC/cm² (Safety Factor 3, Duty Cycle 33%)

No increase in the current over time observed

Currents stable in both prototypes \rightarrow plan to accelerate aging and finish at the end of 2025

THANK YOU Questions are welcome