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Physics Case

• Halo nuclei (e.g., ¹¹Li) established ~40 years ago; no direct 
experimental evidence yet for hypernuclear halos. 

•  rms distance in hypertriton ( ) predicted at 10.8 fm 
(F. Hildenbrand, H.-W. Hammer, PRC 100 (2019)). 

• Predictions for hypertriton matter radius vary between 4–10 
fm depending on binding energy.

Λ − d 3
ΛH

Hypertriton puzzle 

• Inconsistency between several lifetime analyses (STAR, HyPHI0, ALICE). 

• Low binding energy (130(50)(40) keV from nuclear emulsion). 

• Large spatial extension predicted (unmeasured).
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• HYDRA (HYpernuclei Decay at  Apparatus) aims for hypernuclear 
invariant-mass spectroscopy and light hypernuclei. 

• A hypernucleus is a nucleus containing one or more hyperons (Λ, Σ, Ξ, Ω). 

• Hyperons: baryons that contain at least one strange quark (s): 

• Λ (Lambda): lightest hyperon (uds), τ ≈ 263 ps, decays weakly (Λ → 
πN). 

• Σ (Sigma), Ξ (Xi), Ω (Omega): heavier hyperons. 

• First observed in 1953 in cosmic ray interactions. 

• Experiments have identified about 40 single-strangeness (single-Λ) 
hypernuclear species to date.
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GSI Experiment 2026
• Measure the interaction cross section of hypertriton-¹²C to deduce its size. 

• Performed within the  collaboration at GSI/FAIR. 

• Reaction: ¹²C + ¹²C at 1.9 GeV/nucleon → hypertriton production. 

• Reconstruction of invariant mass: , resolution ∼ 1.5  ( ). 

• Production cross section unknown → two-target method (S. Verladita et al., Eur. Phys. J. A (2023)). 

• GLAD dipole magnet at 2 T to bend low-rigidity decay pions.

R3B

3
ΛH → π− + 3He MeV/c2 σ

HYDRA detection systems: 

• TPC – pion tracking (VMM3a/SRS readout). 

• Scintillator wall – trigger and timing (TRB-based reaout). 

• Fiber trackers inside GLAD – recoil tracking (TRB-based readout).
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HYDRA TPC
• Purpose: Detect π⁻ from weak decay . 

• Active area: 88 × 256 mm², 30 cm drift length, 5632 pads (2×2 mm²). 

• Field cage: double wire layers with a small offset → ~95% transparency. 

• Micromegas + GEM: required amplification of 4000 to keep ion backflow 
<1% (Lian-Cheng Ji et al., NIM A 1082 (2026)). 

• Readout: VMM3a ASICs with SRS backend, 48 hybrids to cover full TPC. 

• Drift velocity calibration via UV laser (266 nm) + micro-mirror bundles 
generating reference tracks.

3
ΛH → π− +3 He
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HYDRA TPC requirements 
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• Expected charge particles rate of ~200 kHz. 

• This rate results in a significant space charge density within the TPC’s active volume due to the ion back-flow. 

• To mitigate electric field distortions, an ion back-flow of less than 1% is necessary for a gain of 4000 for the amplification region. 

• We track ε = G × IBF (ions escaping per incoming e⁻). Requirement: ε < 40 ⇒ at G = 4000 need IBF < 1%. 

• Data show G ≈ 2000 is safely within spec; viable settings exist at G = 4000, and a few at G = 6000 but with reduced stability. 

• Prioritize operation at G ~ 4000 and verify performance at these gains.

From F. Horn (Bachelor’s thesis)



HYDRA TPC readout
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See Alexandru Enciu talk at 16:00 in WG5
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HYDRA TPC readout



Laser test at TUDa
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• VMM in continuous read-out mode. 

• 1/2 of the TPC equipped with VMM readout, 24 
VMM3a hybrids + cards 4 adapter modules. 

• Test gas mixture: ArCO2 (92-8%). 

• Drift field: 220 V/cm, Amplification (gain): ~6,000. 

• 266 nm UV laser source, 20 Hz, 3 micros-mirror 
bundles at different heights.



July beamtime
Agenda: performance test for half of the TPC (24 hybrids). 

Beam: 

• π / μ beams. 

• Intensity ~5×10⁴–1.2×10⁵ pps, 1–3 spills/cycle. 

Muon beam: 

• VMM settings: thresholds, gain. 

• Gain (amplification) scan: 2,000 – 10,000. 

• Ion-backflow settings. 

Pion beam: 

• Rate scan:  pps. 

• Gain scan, IBF settings.

104 − 106
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HYDRA TPC Setup
• Detector: HYDRA-TPC prototype with 24 hybrid front-end boards 

mounted on the pad plane. 

• Readout: Hybrids grouped to 3× FECs; clock/trigger via CTFG. 

• High voltage: HV crate for cathode, drift field, GEM, transfer field and 
HV module for Micromegas. 

• Cooling: Simple air cooling with a top fan directed over hybrids/FECs. 

• Gas:  (90-10 %). 

• DAQ & control: FECs cabled to a network switch, then to the run PC for 
configuration and data taking.

ArCO2

Front-end (VMM) 

• Gain: ×3 mV/fC (scan focus; ×6 mV/fC also checked). 

• Peaking time: 200 ns. 

• Thresholds: 230 / 240 / 250 DAC (global). 
– plus calibrated points +30 mV, +40 mV above pedestal. 

• Continuous readout mode for the VMMs. 

Field settings for gain scans: 

•  = 1000 V/cm,  = 350 V,  = 220 V/cm. 

• Amplification was tuned by scanning the MMG bias from 
390 to 440 V.

Et ΔUGEM Ed
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Gain scan - muon beam: 

• MMG 440V (gain 10k); thr. 30 mV, 240, 250; rate: ~0.63e5 pps. 

• MMG 430V (gain 7k); thr. 240, 250; rate: ~0.63e5 pps. 

• MMG 420V (gain 5.5k); thr. 240, 250; rate: ~0.5e5 pps. 

• MMG 410V (gain 4k); thr. 240, 250; rate: ~0.5e5 pps. 

• MMG 400V (gain 3k); thr. 240, 250; rate: ~0.5e5 pps. 

• MMG 390V (gain 2.5k); thr. 240, 250; rate: ~0.5e5 pps.

Gain scan analysis: μ beam
• Event time window 30 us. 

• Clustering in time (within event) 250 ns. 

• Clustering in position (Z) +-3 pads – at least 25 hits in a cluster. 

• Considering only tracks with >5 pads along X. 

• Linear fit: Pad X (centroid) = p0+p1*(Pad Z) – angular cut (p1).

Event and clustering reconstructionGain scan - muon beam
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From M. Duer



• Data: MMG 440V (Gain ~10k); threshold: 30mV, 240 DAC, 250 DAC. 

• Linear fit: Pad X (centroid) = p0+p1*(Pad Z) – angular cut (p1).

• Sigma = 2*sqrt(chi2/NDF). 

• chi2= ∑(y_i-p1*x_i-po)*(y_i-p1*x_i-po).

Gain scan analysis: μ beam
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Rate comparison: μ beam

• Black band = beam rate at 440 V, 430 V measurements. 
420V measurement is normalized according to this rate. 

• MMG 440V (gain ~10k). 

• MMG 430V (gain ~7k). 

• MMG 420V (gain ~5.5k).

• Data: MMG 440V; threshold: 30mV, 240 DAC, 250 DAC. 
• Rates: 30mV – 0.65e5 pps, 240 – 0.62e5 pps, 250 – 

0.29e5 ops. 

• Data: MMG 430V; threshold: 240 DAC, 250 DAC. 
• Rates: 240 – 0.21e5 pps, 250 – 0.07e5 pps. 

• Data: MMG 420V; threshold: 240 DAC, 250 DAC. 
• Rates: 240 – 0.3e5 ups, 250 – 0.1e5 pps. 

• Data: MMG 410V; threshold: 240 DAC, 250 DAC. 
• Rates: 240 – 0.03e5 pps, 250 – 0.005e5 pps. 

• Data: MMG 400V; threshold: 240 DAC, 250 DAC. 
• Rates: 240 – 0.02e5 pps, 250 – low.

Rate comparison - muon beam

Rates
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Plans for November beamtime
• TPC – VMM3a/SRS readout. 

• Scintillator wall for trigger and timing – TRB readout (GSI). 

• Trigger source: signals from muons/pions in the plastic scintillator wall; the resulting trigger is 
fanned into the TPC (SRS/VMM3a) as the event start. 

• Beam: muons & pions. 

• Gases: 

• Ar–CO₂ (90–10 %). 

• T2K mix Ar–CF₄–i-C₄H₁₀ (95–3–2 %). 

Planned measurements: 

• Performance test for half of the TPC (24 VMM hybrids)+ scintillator wall. 

• DAQ test – time synchronization of detectors. 

• Rate capabilities: scan up to a few 100 kHz. 

• Optimize HV and electronics settings ( test higher VMM gains).
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Conclusions
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• A characterization of SRS/VMM behavior (gains, thresholds, limits) was achieved. 

• The operating region of the TPC was outlined from gain–rate scans (MMG, GEM, ..). 

• The amplification chain (GEM + Micromegas) was mapped with MMG scans. 

• Muon/pion tracking was validated with clean events. 

• It emerged that higher VMM3 gain and testing an alternative gas could improve amplification while reducing IBF. 

• To achieve good detection capabilities with minimum IBF (<10k TPC amplification)  we need to increase the VMM gain (>3 mV/fC). 

• If we see we cannot operate at gain 4000 or similar, we may need to consider another gas (T2K). 

• Space charge effects are still to be evaluated: this will be done with high rate runs.
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Thanks for your attention!
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