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Aging and degradation models: why studying it?

● Reliability & Stability: Ensure long-term gain 
uniformity and tracking precision.

● Predictive Maintenance: Detect early degradation to 
prevent failures and reduce costs.

● Radiation & Charge Effects: Understand how 
ionization and charge buildup alter GEM performance.

● Surface Chemistry: Investigate gas–material 
interactions, contamination, and polymerization on 
GEM surfaces.

● Ion Feedback & Discharges: Mitigate micro-
discharges and feedback under high-rate operation.

● Design Optimization: Guide material selection, 
cleaning, and fabrication for next-generation GEMs.
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Aging and degradation models: why studying it?

“The 2021 ECFA detector research
and developement roadmap,” 2021, 
doi: 10.17181/CERN.XDPL.W2EX
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Aging and degradation models: what happens?
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Degradation:
- Erosion;
- Deposition;

“Preliminary studies on GEM foil degradation in harsh radiation environments", 
PoS, 2019, https://doi.org/10.22323/1.350.0036  

https://doi.org/10.22323/1.350.0036
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Aging and degradation models: the Malter effect
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Aging and degradation models: the Malter effect
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Aging and degradation models: the Malter effect
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Aging and degradation models: the insulating film

Formation of insulating layer 
decreases ion neutralization

Positive charge 
build up

Multiplication of 
emitted electrons

Field-emission 
of electrons

Malter Discharge

● Discharge Behavior: Films modify 
surface conductivity, increasing the risk of 
micro-discharges.

● Surface Chemistry: Understand 
oxidation, adsorption, and polymerization 
processes on copper.

● Aging Mechanisms: Identify how 
radiation, gas composition, and impurities 
drive film growth.

● Material Optimization: Guide cleaning, 
treatment, and coating methods to control 
surface passivation.
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Aging and degradation models: the insulating film

The University of Nottingham equipment

● Iontof TOF.SIMS IV
– Liquid metal primary ion source (Bin+ )

– Gas Cluster ion Beam source (Arn
+)

– Thermal sputtering ion Source (Cs+)

– Single stage reflectron ToF analyser

– Nominal mass resolving power m/dm @ 29 u: 10,000

ToF-SIMS is a ultra sensitive 

surface analysis technique.
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ToF-SIMS as a surface analysis technique
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ToF-SIMS as a surface analysis technique
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ToF-SIMS as a surface analysis technique

Possible connection 
with sparks!
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XPS and NAP-XPS as surface analysis techniques

Near-Ambient Pressure X-ray Photoelectron 
Spectroscopy (NAP-XPS) analysis used to monitor 
the adsorption and surface chemical reactions 
between copper and CO2 (FOR DIFFERENT CO2 
PRESSURES) in a GEM foil produced at CERN 
workshop.

UHV system to NAP-XPS 
Lab. de Fenômenos de Interface e Superfı́cie do CBPF

https://ipgi.co.in/xps-x-ray-photoelectron-spectrometer/

X-ray Photoelectron Spectroscopy 
(XPS) works by irradiating a material 
with X-rays and measuring the kinetic 
energy of emitted electrons to determine 
the elemental composition and chemical 
states of the surface.
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Sample preparation: the type of copper surface matters

Sample preparation

ALICE-TPC 
samples from 
spare mounts

T.B. Saramela 
at the GSI lab

● GEM samples produced by the 
CERN workshop
– For the ALICE TPC spare parts
– Stored in same conditions as the 

GEMs used in the assembly

● Why not samples of copper?
– Adsorption is highly dependent of the 

surface conditions
● Cristalinity, oxidation states, roughness, etc.

– Using GEM samples as produced in the 
CERN workshop is meaningful as GEM 
samples
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Results: the pristine surface is not metallic copper

● Copper signal from the 
surface for different CO2 
partial pressures

● Pristine surface is a 
mixture of Cu2O (Cu+1) 
and CuO (Cu+2)

Sputter 
treated

2 keV Ar beam 
for cleaning by 

sputtering

Not 
treated

Samples as 
produced by 

CERN
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Results: the pristine surface is not metallic copper
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Results: Cu2O signal increases and saturates with pressure

● Copper 2p signal from 
the surface for different 
CO2 partial pressures

● CuO is converted into 
Cu2O for increasing 
pressure, but saturates
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Results: Surface reactions on the pristine surface

● Carbon 1s signal from the 
surface for different CO2 partial 
pressures

● Carbonate, hydroxyl, 
physisorbed, and 
chemisorbed species form 
only on pristine samples.
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Results: Surface reactions on the pristine surface

● Carbon 1s signal from the 
surface for different CO2 
partial pressures

● After Cu2O saturation, 
l-CO2 converts to b-CO2 and 
the hydroxyl increses
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Conclusions

● No metallic copper at pristine surface
– Metallic copper did not react with CO2

● CuO converts into Cu2O
– CuO is not formed naturally (requires external energy)
– May be formed in chemical reactions during production

● Both, CuO and Cu2O are p-type semiconductors 
– 1.2 and 2.0 eV, respectively
– Not good insulators, mainly in higher temperatures
– Behave like conductors at 100 and 150 oC respectively

● Cu2O presents low interaction with CO2

– Weak tendency to be an aging agent



Oct 7, 2025 TFSilva - 6rd DRD1 Meeting, Varsaw, Oct. 2025. 21 / 23

IFUSP

Conclusions

● Both pristine and sputter treated surfaces present carbon signals
– No carbon reaction observed in sputter treated samples (graphite trace contamination?)

● Carbonate, hydroxyl, physisorbed, and chemisorbed species 
observed only on pristine samples
– Carbonate signal reduces systematically in pristine sample
– Hydroxyl presented increment after Cu2O saturation

● Dependent on adsorbed water (which is present in pristine samples)
– l-CO2 converts to b-CO2 after Cu2O saturation

● Physisorbed CO2 (Van-der-Walls bonding) become chemisorbed (covalent bonding)

● Probably in the CuO residual region
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Next steps: determine Cu oxidation states distribution

Back-scattered 
electrons

Secondary 
electrons

Cu2O? CuO?
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