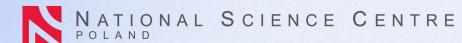

Field-Assisted Transparent Gaseous Electroluminescence Multipliers (FAT GEM) -Updates

D. Rodas Rodríguez



Outline

- 1. Dark Matter detection challenges
- 2. Brief FAT-GEM history
- 3. New production @AstroCeNT
- 4. Experimental campaign
- 5. Results
- 6. Ongoing work
- 7. Conclusions

Dark Matter detection challenges

Dual-phase detectors are a preferred choice in **Dark Matter searches** (XENON, LZ, DarkSide). Detection rely on **electroluminescence** mechanism in the gas phase.

Improving sensitivity:

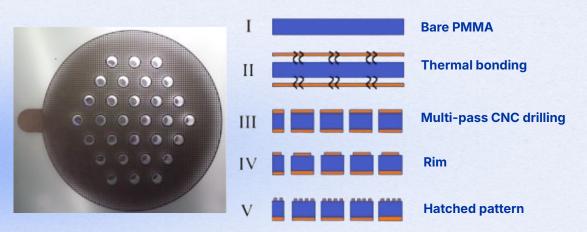
- Improving the background rejections
- Lower detection threshold
- Larger exposure (mass x time)

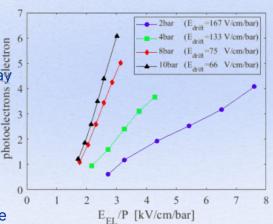
Field Assisted Transparent Gaseous Electroluminescence Multiplier (FAT GEMs)

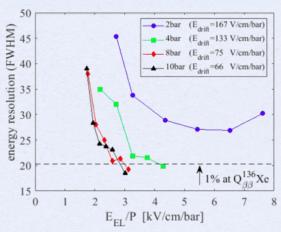
- Integration with WLS coatings
- Modular, tileable, and radiopure
- Robust mechanical design

Improve light collection efficiency:

- Ar based detectors → VUV emission → need of WLS
- Meshes and wires widely use as amplification stage:
 - Loss of tension with time
 - Difficult to scale up to large areas
 - Lack of modularity
 - No option of direct coupling to solid WLS
 - Difficulties at extracting e- from the liquid-gas interface

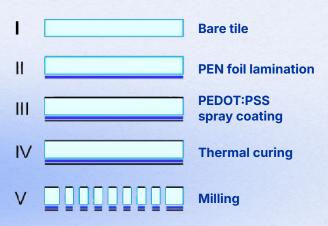



EL field scan

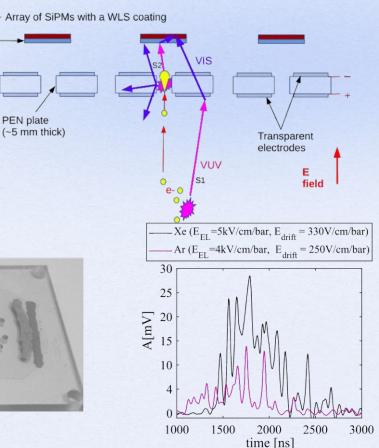

Brief FAT-GEM history (I)

FAT GEMs introduced in **2020**. Originally developed for neutrino-less double beta decay in HP-Xenon

- Intrinsically radiopure (based on PMMA and Cu)
- Flexibility to tune optical properties (solid WLS, reflectivity and transmission)
- Proof-of-principle: (D. González-Díaz et al., J. Phys. Conf. Ser., 1498 (2020) 012019.)
- Structure inherently **stable** up to 3kV/cm/bar at 10bar (about x2.5 higher voltage than NEXT-NEW)

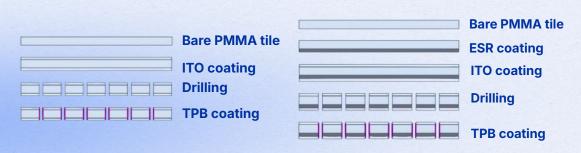


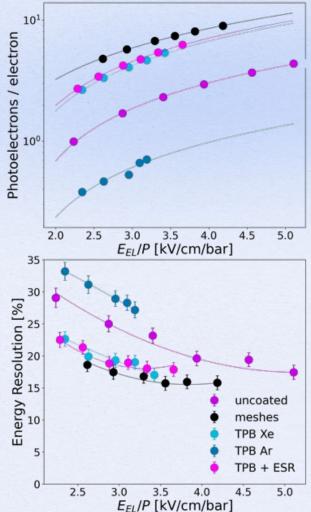
Brief FAT-GEM history (II)


WLS implementation

(M. Kuźniak et al., Eur. Phys. J. C, 81 (2021) 609.)

- Use transparent bulk material (PEN) as solid WLS.
- Demonstrated first operation in Ar with conventional (Ar-blind) photosensors.

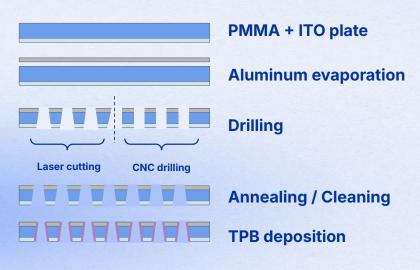




Brief FAT-GEM history (III)

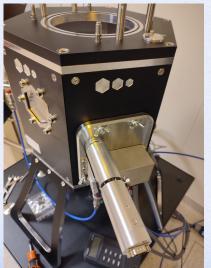
Introduce new procedures: (S. Leardini et al., Sci. Technol. 2 (2024) 1373235.)

- Incorporates reflective (ESR) and transparent ITO films to the structure to enhance light collection.
- New method to evaporate TPB into the holes' walls.
- Demonstrated performance comparable to that obtained under parallel meshes.

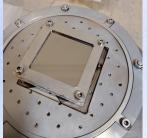


New production @AstroCeNT

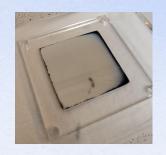
Limitations encountered:

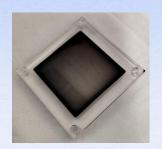

- ESR producing charging up of the structure.
- ITO and ESR as an adhesive film
- ITO transparency: 80%

Upgrades from last production:


- Replacing ESR for Aluminum electrode, removes charging up keeping reflectivity at similar values.
- Adhesive ITO replaced for magnetron sputtered
 ITO.
 - Higher transparency (from 80% to 90%)
- Laser drilling instead of CNC drilling.
 - Explore the impact of different hole geometries

Aluminum evaporation



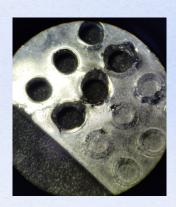


Problems faced:

- Dark spots
- Completely black electrode non reflective

Optimization of evaporator parameters:

- Vacuum
- Temperature
- Rate and thickness
- Frames


Laser drilling

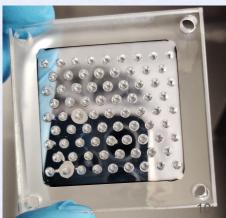
Main advantages:

- Fully autonomous production
- Easy and fast production
- Try different geometries

Problems faced:

Grid reflections

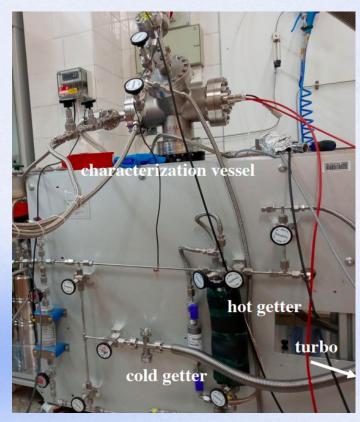
White spots

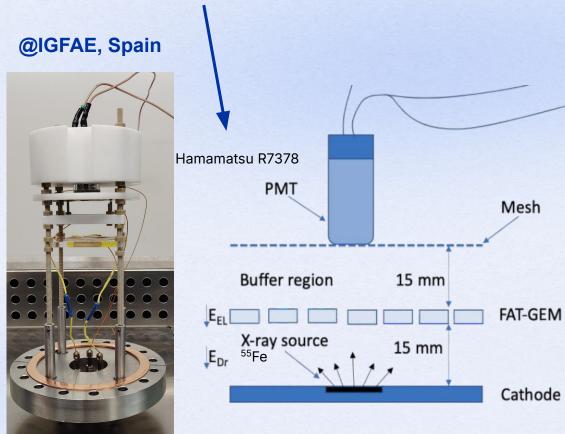

Fixed: Laser power and time between holes

Annealing / Cleaning + TPB deposition

- Laser drilling exposes the bulk material to localized high temperatures that produces stress in it. Annealing is needed to reduce the stress and recover material properties.
- **CNC drilling** might leave residual oils or other materials in the holes. A cleaning process is needed to reduce impurities.
 - Ultrasonic bath is very aggressive and might end up removing the Aluminum layer.
 - Specific soap and brushes were used.
- TPB was deposited in the holes of the structures. However, there
 might be some uniformities in them.

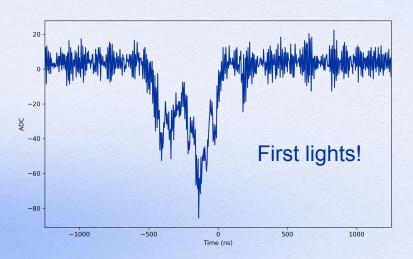
Experimental Campaign

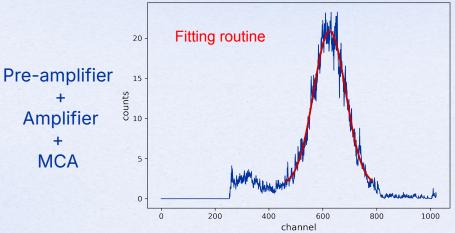

A batch of structures with different configurations was produced and shipped to **IGFAE**, Spain where it was tested during summer.

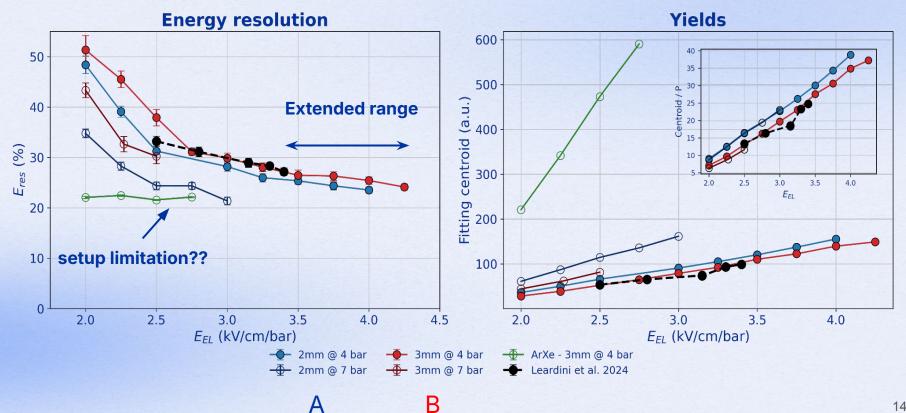

Structure	Size (cm²)	Hole diameter (mm)	Pitch (mm)
Α	5x5	2	4
В	5x5	3	5
С	7x7	2	4

First step, characterizarin of these structures before cryogenic tests.

BLIND TO AR LIGHT

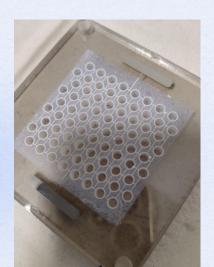

Setup




Results

- Ar at 4 bar and 293 K → equivalent density to cryogenic operation (1 bar, 87.5 K)
 - Initial commissioning was done in Ar/Xe (99/1) at 4 bar.
 - Cold getter used to purify Ar

Results



Ongoing Work

Batch of structures produced ar CERN Workshop are being tested right now at IGFAE

- Semi-transparent electrode allowing for S1 detection
- First tests with 5.5 MeV alpha source
- Smooth operation, no strong indication of charging-up from TPB at the FAT-GEM cathode

Ongoing Work

- Batch of structures produced ar CERN Workshop are being tested right now at IGFAE
 - Semi-transparent electrode allowing for S1 detection
- New batch of structures produced at AstroCeNT to be tested in Warsaw in cryogenic conditions as a first approach to dual-phase applications.

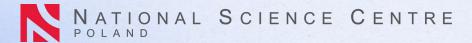
Simulations:

- Optimize optical response (WLSE and light collection)
- Understand effects of hole size variations and shapes in detector response.

ArGset @CEZAMAT

Conclusions

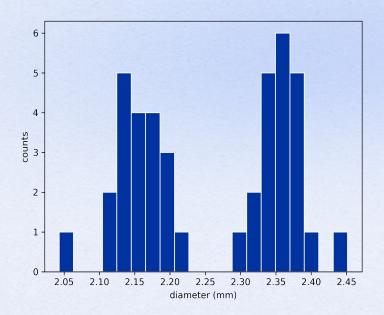
- A revision of the fabrication process of FAT GEMs was undertaken at AstroCeNT facilities:
 - ITO adhesive film replaced by magnetron sputtered ITO (improved transparency from 80% to 90%).
 - Replacing ESR adhesive film for evaporated Aluminum (eliminates charging up keeping similar reflectivity).
 - Replacing CNC for laser drilling.
- FAT GEM performance improves over previous structures with room for improvement (optimization of TPB evaporation WLS eff 40-50% from simulation).
- A second production batch at CERN made with a semitransparent cathode.



Thank you!

D. Rodas Rodríguez^{1,2}, A. F. V. Cortez¹, M. Kuźniak¹, A. Gnat¹, G. Nieradka¹, T. Sworobowicz¹, P. Amedo², D. González-Díaz², C.D.R. Azevedo³, K.F. Floethner⁴, P. Gasik^{5,6}, C.M.B. Monteiro⁷, R. Oliveira⁴, V. Peskov⁴, J.M.F. dos Santos⁷, J.Llerena², D.Tenreiro², E. Alario², A. Pallas²

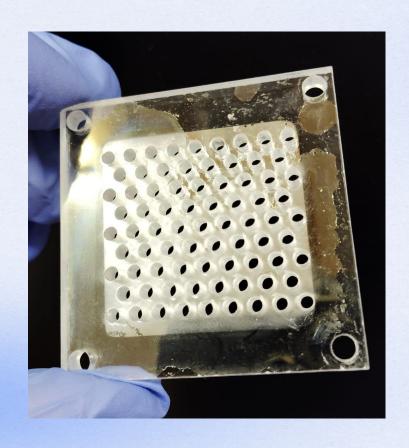
¹Astrocent, Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Warsaw, Poland.
 ² Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
 ³Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), Universidade de Aveiro, Aveiro, Portugal.
 ⁴CERN, Esplanade des Particules 1, Meyrin, Switzerland.
 ⁵GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI), Darmstadt, Germany.
 ⁶Facility for Antiproton and Ion Research in Europe GmbH (FAIR), Darmstadt, Germany.
 ⁷LIBPhys-UC, Department of Physics, University of Coimbra, Portugal.


Laser drilling

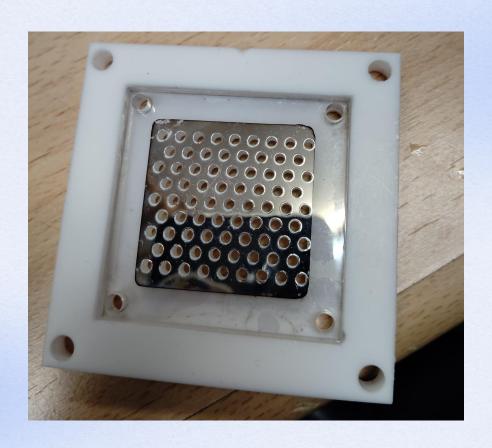
Main advantages:

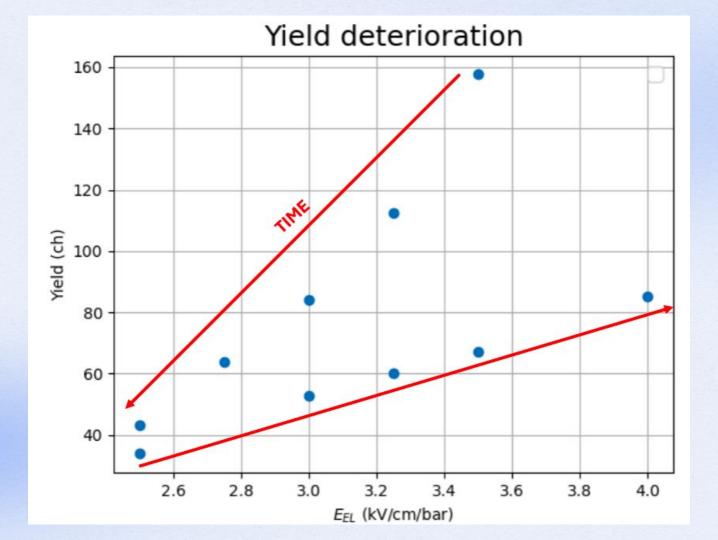
- Fully autonomous production
- Easy and fast production
- Conical holes (?)

Hole size characterization



• Side down:


2.157 ± 0.034 (mm)


Side up:

2.358 ± 0.026 (mm)

