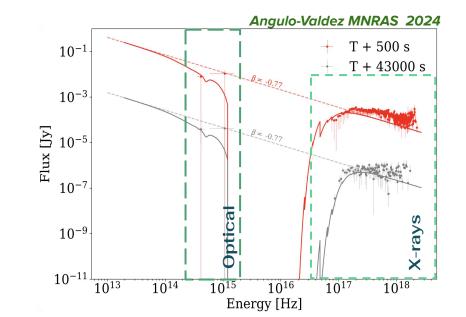

Relativistic Fluids around Compact Objects (RFC02025)

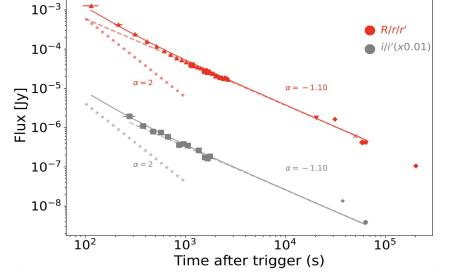
Machine-Learning Enhanced Photometric Analysis of the Extremely Bright GRB 210822A

Camila Angulo Valdez (1st year PhD student, IA-UNAM)

Warsaw, Poland, May 5th 2025


GRB 210822A (T90 = 186 s)

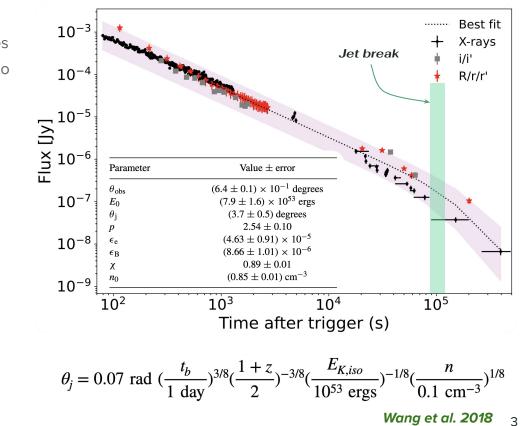
Temporal Analysis


- We analysed the temporal evolution of the afterglow in the *r* and *i* bands
- We fitted a function $F_v \propto t^{-\alpha}$ to each band
- Better fit when a reverse shock (RS) component is considered
- RS suggests a matter-dominated shell, implies low level of magnetisation

Spectral Analysis

- Light curves and spectra from UKSSDC in the 0.3-10 keV range.
- Optical and X-ray data are well fit by a function $F_v \propto v^{-\beta}$, considering reddening and dust absorption.
- Our β yields a $p = 2.52 \pm 0.12$ and a value $F_v \propto t^{-1.14 \pm 0.09}$ consistent with the temporal decay found previously.

2

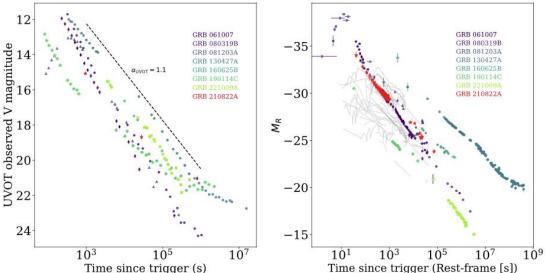


Machine-Learning Method (Applied to GRB 210822A)

- We scaled the optical flux to a common frequency, considering v^{0.77}
- ML model trained on 30k AFTERGLOWPy light curves
- Neural Network evaluated with observed GRB data to obtain parameter estimates

Jet Break

- The presence of two different power-law segments seems to indicate a jet break
- Using typical values we obtain θ_j = 3-5° ± 0.5 in a constant ISM
- Angles consistent with the lower limits on the GRB samples (Berger 2014) and similar to the values observed through the ML model

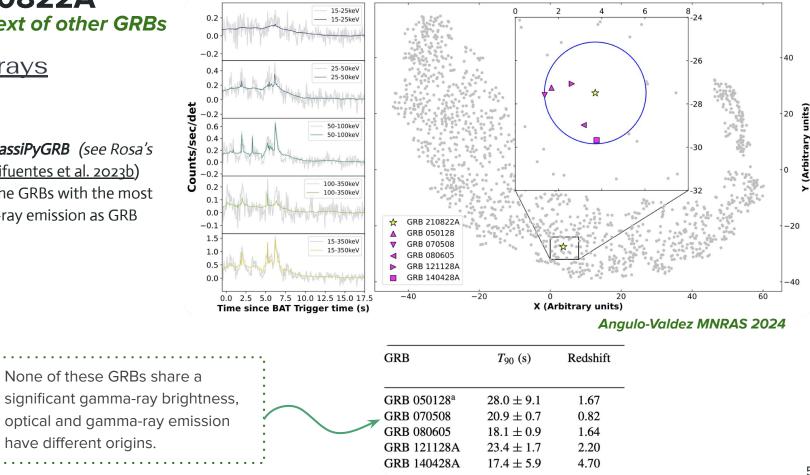


Angulo-Valdez MNRAS 2024

GRB 210822A In the context of other GRBs

UV and Optical

- Oates (2023) presented an analysis of the brightest long GRBs detected by Swift/UVOT
- We compared UV photometry of GRB 210822A ର୍ଷ୍ଣ with these GRBs
- Considering that redshifts, duration and ² opening angles are in similar ranges, we suggest a similarity in the origin and evolution of GRB 210822A.
- Presence of a RS component in GRBs 080319B, 130427A, 160625B, 190114C, y 221009A
- Multi-frequency observations are needed for a complete understanding of each GRB.


Angulo-Valdez MNRAS 2024

Event	T_{90} [s]	z	θ_{j} [°]
GRB 061007	75.7 ± 2.5	1.26	0.8 - 4.7
GRB 080319B	124.9 ± 3.1	0.94	0.2 - 4.6
GRB 081203A	223.0 ± 89.9	2.05	
GRB 130427A	244.3 ± 4.7	0.34	2.5 - 7.0
$GRB \ 160625B^4$	$460.0 \pm$	1.41	2.0 - 12
GRB 190114C	361.5 ± 11.7	0.42	7.0 - 32
GRB 221009A	1068.4 ± 13.3	0.15	0.7 - 2.0
GRB 210822A	185.8 ± 46.6	1.74	3.0 - 5.0

GRB 210822A In the context of other GRBs

Gamma-rays

We used the *ClassiPyGRB* (see Rosa's talk) (Garcia-Cifuentes et al. 2023b) library to find the GRBs with the most similar gamma-ray emission as GRB 210822A

GRB 210822A

Summary

- We presented the analysis of the optical photometry of the afterglow of the bright GRB 210822A.
- We identified a RS component in the optical bands at T < 300s and a jet break between T + 80,000 s and T + 100,000 s.
- We implement a novel neuronal network technique to model the LC and constrain the intrinsic parameters of the GRB.
- We showed the similarity of GRB 210822A with other events that are extremely bright in the optical/UV.

Angulo-Valdez, C. <u>Machine-Learning Enhanced Photometric Analysis of the Extremely Bright</u> <u>GRB</u> <u>210822A</u>, MNRAS, Volume 527, Issue 3, January 2024, Pages 8140-8150

Thank you!

camiangulo@astro.unam.mx

