Diagnosing accretion with polarimetry

Maciek Wielgus

Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain

MINISTERIO DE CIENCIA E INNOVACIÓN

UNIÓN EUROPEA Fondo Social Europeo El FSE invierte en tu futuro

M87*

M = 6.5e9 Msol D = 17 Mpc LLAGN with a prominent jet

EHT Collaboration 2021

Sagittarius A*

M = 4.3e6 Msol D = 8 kpc dormant BH

EHT Collaboration 2024

$\overrightarrow{P} \propto \overrightarrow{k} \times \overrightarrow{B}$ (emitter's frame)

but no too high fractional polarization

 $\overrightarrow{P} \propto \overrightarrow{k} \times \overrightarrow{B}$ (emitter's frame)

reality = intuition + spacetime curvature + relativistic aberration

Narayan et al. + EHTC 2021 Vincent, Wielgus et al. 2024

$\overrightarrow{P} \propto \overrightarrow{k} \times \overrightarrow{B}$ (emitter's frame)

reality = intuition + spacetime curvature + relativistic aberration

$\overrightarrow{P} \propto \overrightarrow{k} \times \overrightarrow{B}$ (emitter's frame)

reality = intuition + spacetime curvature + relativistic aberration

Linear polarization - Faraday effects matter

Linear polarization - Faraday effects matter

reality = intuition + spacetime curvature + relativistic aberration + plasma effects

Linear polarization - one zone model for M87*

Figure 2. Allowed parameter space in number density and dimensionless electron temperature (n_e, Θ_e) (red region) for the one-zone model described in Section 3.1 for three constant values of $\beta_e = 8\pi n_e m_e c^2 \Theta_e / B^2$. We require that the optical depth $\tau_I < 1$ (green region), the Faraday optical depth $\tau_{\rho_V} > 2\pi$ (blue region), and the total flux density $0.2 < F_{\nu} < 1.2$ Jy (black region). Contours of constant magnetic field strength are denoted by labeled dashed lines.

A uniform synchrotron-emitting ball, with size and flux density constrained by the EHT measurements

(green) optically thin ball (we see the shadow) (blue) large Faraday depth (we see depolarisation) (gray) matching flux density to VLBI

One zone model predictions: B = 2-10 G; Te =1e10-1e11 K; ne ~= 1e5 /cm3

Te lower than expected ions temperature => two temperature collisionless plasma

$$\Theta_{\rm e} = 1 \rightarrow 6 \times 10^9 \, {\rm K}$$

Linear polarization - GRMHD

1

 R_{high}

Rhigh

Unresolved / resolved averaged P Shape / twistiness of the P pattern

OBSERVATION

Rlow ~ Tion / Telectron in the jet

Conclusions

- O M87* and Sgr A* both appear as strongly magnetized MAD systems
- O Poloidal magnetic fields present (dominant?) near the event horizon
- O Depolarizing effects of Faraday rotation can not be neglected
- O Plasma around M87^{*} most likely rotates clockwise on sky
- O Electrons relatively colder than ions by 1-2 orders of magnitude
- O Spin unclear

O reality = intuition + spacetime curvature + relativistic aberration + plasma effects + emission geometry