

Radiation hydrodynamics simulations of

super-Eddington mass transfer in close BH binaries

Daisuke Toyouchi

(ILR Fellow, Osaka university)

in collaboration with

Kenta Hotokezaka (RESCEU), Kohei Inayoshi (KIAA),

Rolf Kuiper (Duisburg-Essen univ.)

Relativistic fluids around compact objects @ Warsaw, 2025/5/5-9

Binaries undergoing super-Edd. mass transfer

Ultra-luminous X-ray (ULX) binaries

- $L_X > 10^{39} \text{ erg/s}$ (Brighter than Ledd for stellar-mass BHs)
- Massive donor with $>10~\text{M}_\odot$ can cause super-Edd. mass transfer

$$\dot{M}_{\rm d} \sim -\frac{M_{\rm d}}{\tau_{\rm KH}} \sim 10^{-2} \,\,{\rm M_{\odot}yr^{-1}} \sim 10^4 \,\,\dot{M}_{Edd}$$
 for $M_{\rm d} \sim 10 \,\,{\rm M_{\odot}}, \tau_{\rm KH} \sim 10^3 \,\,{\rm yr}$

Most ULXs have fast outflows with ~ 0.1 c.

Purpose of this study

- 1. Understand origin of outflows in ULXs (P_{rad}-driven?)
- 2. Discuss the long-term evolution of ULXs

3D & 2D RHD simulations

- Suppose a BH+RGB star binary undergoing stable mass transfer (Inayoshi+2017)
- $M_1 = 34 M_{sun}, M_2 = 41 M_{sun}, a = 36 R_{sun}, P = 2\pi/\Omega \sim 3 day$
- Mass transfer rate: $\dot{M}_T \sim 10^4 \ \dot{M}_{Edd} \sim 7.5 \times 10^{-3} \ \mathrm{M}_{\mathrm{sun}}/\mathrm{yr}$

3D & 2D RHD simulations

- Suppose a BH+RGB star binary undergoing stable mass transfer (Inayoshi+2017)
- $M_1 = 34 M_{sun}, M_2 = 41 M_{sun}, a = 36 R_{sun}, P = 2\pi/\Omega \sim 3 day$

Simulation results

Properties of outflows

Fast outflows (~ 0.1 c)

- Toward polar regions
- Large energy, and small mass fluxes
- similar to fast outflows observed in ULXs.

Slow outflows (< 1000 km/s)

- Near equatorial plane
- Small energy, and large mass fluxes
- Convection in disk transports mass and energy outward, driving slow outflows.
- Convection-Dominated Accretion Flow (CDAF; cf., Quataert & Gruzinov 2000)

Radial profile of Inflow Rate

Comparison with previous RHD simulations

Circum-binary disk (CBD) formation

- \checkmark Over 90 % of slow outflows in our simulations are still gravitationally bound.
 - Slow outflows will cool down and form a circum-binary disk.
- ✓ Over 30 % of ULX binaries exhibit IR excess, indicating the presence of CBD (e.g., Heida+2014, Lopez+2017, Lau+2019, Lu+2022).
 - Indirect evidence of radiation pressure-driven outflows in ULXs?

Evolution of Circum-binary disk

 \checkmark CBD gradually expands due to the tidal torque from the binary.

✓ The binary loses its angular momentum via interaction with CBD efficiently.

HD simulation of CBD by Pejcha+2017

Evolution of Circum-binary disk

 \checkmark CBD gradually expands due to the tidal torque from the binary.

✓ The binary loses its angular momentum via interaction with CBD efficiently.

$M_{ m II}/M_{ m I}$	Н	E ₁	E _f	J.	I 1	wmax
0.001	-1.519	-0.375	-0.339	1.145	1.180	1.82
0.05	-1.673	-0.171	-0.023	1.502	1 650	34.6
0.064	-1.692	-0.161	0.000	1.532	1.692	00
0.10	-1.726	_0149	0.037	1 578	1 763	10001000
0 20	-1.768	Unhound	0.072	1.616	1.840	Final SΔM
0.30	-1.780	Unbound:	0.072	1.609	1.852	
0.40	-1.779	-0.193	0.061	1.587	1.840	of outflow
0.50	-1.774	-0.214	0.046	1.560	1.819	~~
0.60	-1.766	-0.232	0.029	1.533	1.795	00
0.70	-1.756	-0.250	0.013	1.506	1.770	00
0.78	-1.749	-0.263	0.000	1.486	1.749	00
0.80	-1.747	-0.266	-0.002	1.481	1.744	498.
0.90	-1.737	-0.280	-0.017	1.458	1.720	57.3
1.00	-1.728	-0.292	-0.031	1.436	1.697	30.7

Numerical calculation by Shu+1979

Implication for orbital evolution of binaries

New channel for common envelope evolution

Slow outflows under super-Edd. MT removes angular momentum efficiently.

- \rightarrow Orbital separation becomes so small that the binary undergoes common envelope (CE) evolution.
- → ULX binaries are more likely to enter CE phases than previous expectation.

Summary

- ✓ We have conducted 3D and 2D RHD simulations of super-Edd. mass transfer in binaries.
- ✓ We have explored global inflow/outflow structure covering from the L1 point to $r \sim 100 r_g$ from the central BH.
- ✓ Convective motions in the disk transport mass and energy outward and generate slow outflows, which dominate the mass loss from the binary.
- Over 90 % of outflows are still gravitationally bound, such that they would cool down and form circum-binary disk, which is in good agreement with the observational fact in ULXs.
- Our simulation results are useful to describe long-term orbital evolution of binaries and formation mechanisms of close BBHs.