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Neutron star Ultraluminous X-ray Sources (NS-ULX(s)

« ULXSs: Non-nuclear extra-galactic sources that emit X-rays at luminosities
exceeding 10°° erg s™', above the critical Eddington luminosity for a compact
object with a mass less than 10 solar mass.

= Super-Eddington accretion onto stellar mass objects (neutron stars and black holes),

= Supper-Eddington radiation in the radii between magnetosphere and spherization radius,

L= Ly [1+InM /M), (Shakura & Sunyaev, 1973).

= Radiation pressure causes the outflow and resulting beaming (Ring et al. 2001).

= Ring. et.al, 2001: ULXs powered by extremely high accretion rate onto compact objects in
high-mass X-ray binaries (HMXBs) in a transient stage.



Beaming emission

« KLK model (studied by King, Lasota & KluZniak, 2017; King & Lasota, 2019, 2020):

v The compact object emits its radiation within a fraction b of the unit sphere, causing the
luminosity to be overestimated by a factor of 1/b

v when b<<1 then the inferred isotropic luminosity, L,,, ~ L/b
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Simulation details

* General relativistic radiative magnetohydrodynamic (GRRMHD) code, KORAL.

* Conservation of mass ne energy-momentum tensor:

Vu(put)=0 & Vu(TH, +RE,) =0

* Neutron star: mass 1.4 Mg and radius 5r, (r,= GM/c?) with dipole magnetic field
* Torus: Equilibrium torus with loop magnetic field with B = (P,,,+P,,4)/P,,,, = 10
* Resolution: N x Ngx N, = 512 x 510 x 1 with logarithmic spacing in r direction

* Schwarzschild metric

* Boundary condition: energy reflective surface for the neutron star with albedo 0.75
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Initial setup
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Models

B [G] M Mot L/Lgyq b min Liso/Ledq Ralr,
[Leaa €] | [Leda €7’
1x10° | 257 325 2.10 0.016 115 5.25
2 x10%° | 320 317 1.97 0.020 100 6.85
3x10%° | 345 250 1.90 0.023 90 10.15
5x 10 | 355 150 1.55 0.026 68 13.30
7 x 10 | 430 190 1.50 0.045 45 15.85
1 x 10 | 490 80 1.49 0.083 39 17.39
3x10%° | 144 30 1.14 0.050 40 11.85
3 x 10%° | 1000 3600 2.5 0.010 185 8.10
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Time-averaged data
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Different regions
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Radiation and kinatic efficiency

‘["r = —27 /Rr;‘\a" —gd[‘;"|7.r{1.

Lgg = -2 / (g + v/ —gu )pu" v/~ gdf

Bex, ur =)

n=L/(Mc?)

Weaker magnetic field
* more powerful outflows
* higher radiation efficiency
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Conclusions

The simulation with a weak dipole (10'° G) compared to strong dipole (10" G):
v More powerful outflow
» Higher radiation efficiency
= Higher apparent luminosity

10'° G =>> the apparent luminosity about 120 Eddington luminosity.

10'' G =>> the apparent luminosity about 40 Eddington luminosity.
Increasing accretion rate in simulation with a fixed magnetic dipole strength:

" More powerful outflow

= Jower radiation efficiency

= Higher apparent luminosity
The simulation with dipole strength 10 G and accretion rate of 1000 Eddington units gives the
apparent luminosity of 250 Eddington luminosity.
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