Relativistic Fluids around Compact Objects --CAMK, Warsaw, Poland -- 05.v.25

Do we understand pair cascade in AGN (and BH binary) jets?

Mikhail Medvedev

Papers: Ford, Keenan, MM - PRD (2018) Sitarz, Fiord, MM - ApJ (2024)

Supported by the NSF grants PHY-2010109, PHY-2409249.

Motivation. AGN with jets/no-jets

no jets

Some but not all AGN have jets — — Why?

with jets

Radio loud/quiet dichotomy

Motivation...

- **PROBLEMS**:
- jet composition leptons/baryons is unknown
- what switches jets on is unclear
- CR acceleration is discussed

and also debated:

- jet launching mechanism
- jet collimation mechanism
- role of accretion
- role of spin of a SMBH
- role & structure of magnetic field

What powers a jet?

Energy source of a jet — rotational energy of a BH

Energy extraction mechanism — Blandford-Znajek — *a la* unipolar inductor

Blandford-Znajek (1977)

spinning BH — poor conductor (r~377 Ohm) — in an external B-field \rightarrow unipolar inductor

Magnetic flux

 $\Phi \sim B R_{BH^2} (R_{BH} \sim GM/c^2)$

Electromotive force

 $U \sim d(flux)/dt \sim B R_{BH^2} \Omega_{BH}$

Power

 $P \sim U^2/r \sim B^2 R_{BH}^4 \Omega_{BH}^2 \sim B^2 M^2 (spin)^2$

Jets powered by BH spin

Jets need plasma

Energy source of a jet — rotational energy of a BH

Energy extraction mechanism — Blandford-Znajek — *a la* unipolar inductor

Need plasma on field lines to conduct current

No plasma => no power => no visible jet

Plasma escapes from the system. Need to produce plasma in situ. How?

Basic setup

Passa Pierce of the force-free magnetosphere appear through α and α

and ω .

Denoting the magnetic flux function as Ψ , one can define the poloidal magnetic field in terms of Ψ :

Plasma production: How? -- Cascade

Mechanism:

Beskin, Istomin, Par'ev, 1992 Hirotani, Okamoto, 1998 Ptitcina, Neronov, 2015 E-field accelerates charges in the gap region

Compton up-scattering of background photons into gamma-rays

gamma-rays + background photons produce e⁺e⁻ pairs

Cascade in Particle-in-Cell simulations

(Crinquand B., Cerutti B., Philippov A., Parfrey K., Dubus G., 2020, PhRvL, 124, 145101)

Electrodynamics

Crude estimate of a cascade

$$e + \gamma_b \to e + \gamma_\Gamma$$

 $\gamma_b + \gamma_\Gamma \to e^+ e^-$

Threshold: $\nu_b \nu_{\Gamma} \ge (2m_e c^2)^2$

Multiplicity: $N_{tot} = N_{\Gamma} N_{\pm} > 1$

Photons, which
can yield
cascade:threshold
multiplicitymultiplicity $10^{-9} \left(\frac{\epsilon_{-8}}{B_4 M_8 \beta_F r^2 \xi} \right)^{1/2} \lesssim \frac{\nu_b}{m_e c^2} \lesssim 10^{-7} \left(\frac{\epsilon_{-8}^3}{B_4 M_8 \beta_F r^6} \right)^{1/4}$

infrared - microwave

there is critical radiation luminosity fraction, epsilon_b below which the cascade does not exist

Crude estimate of a cascade

$$e + \gamma_b \to e + \gamma_\Gamma$$

 $\gamma_b + \gamma_\Gamma \to e^+ e^-$

Threshold:

Multiplicity:

 $\nu_b \nu_{\Gamma}$

Note, for a stellar mass BH, the pair-producing photons are narrow-band: N_{tot}

$$\nu_b \sim 10^{-5} m_e c^2 \sim a$$
 few eV

Photons, which can yield cascade:

infrared - microwave

there is critical radiation luminosity fraction, epsilon_b below which the cascade does not exist

Lepton and photon fluxes

Gamma-ray production

$$\pm \frac{\partial}{\partial x} F^{\pm}(x,\epsilon_{\gamma}) = \eta_{c}(\epsilon_{\gamma},\Gamma(x))n^{\pm}(x)\sqrt{1 + \frac{1}{\Gamma^{2}(x)} - \eta_{p}(\epsilon_{\gamma})F^{\pm}(x,\epsilon_{\gamma})}$$

Compton redistribution function

$$\eta_c \equiv \int_{\epsilon_{\min}}^{\epsilon_{\max}} d\epsilon_s \, \frac{dN_s}{d\epsilon_s} \, \sigma_{\rm KN}(\epsilon_s \Gamma) \delta(\epsilon_\gamma - \Gamma^2 \epsilon_s)$$

Compton scattering crosssection with Klein-Nishina

$$\sigma_{\rm KN}(z) \equiv \frac{3}{4} \, \sigma_{\rm T} \left\{ \frac{1+z}{z^3} \left[\frac{2z(1+z)}{1+2z} - \ln\left(1+2z\right) \right] \right. \\ \left. + \frac{\ln\left(1+2z\right)}{2z} - \frac{1+3z}{(1+2z)^2} \right\},$$

angle-averaged pair production function

$$\eta_p(\epsilon_{\gamma}) \equiv \frac{1}{2} \int_{-1}^{1} d\mu \int_{2/[(1-\mu)\epsilon_{\gamma}]}^{\epsilon_{\max}} d\epsilon_s \frac{dN_s}{d\epsilon_s} \sigma_P$$

pair production cross-section

$$\sigma_P \equiv \frac{3}{16} \sigma_{\rm T} (1 - v^2) \left[(3 - v^4) \ln \frac{1 + v}{1 - v} - 2v(2 - v^2) \right]$$
$$v(\mu, \, \epsilon_{\gamma}, \, \epsilon_s) \equiv \sqrt{1 - \frac{2}{1 - \mu} \frac{1}{\epsilon_{\gamma} \epsilon_s}}$$

Pair production
$$\pm \frac{d}{dx} \left[n^{\pm}(x) \sqrt{1 - \frac{1}{\Gamma^2(x)}} \right] = \int_0^\infty \eta_p(\epsilon_\gamma) \left[F^+(x, \epsilon_\gamma) + F^-(x, \epsilon_\gamma) \right] d\epsilon_\gamma$$

Results:

EM structure of the gap

Illustration: photon flux

photon energy [MeV]

Build-up of photon fluxes

Seed photons: index-2 power-law, 4 eV< E <100 keV

M=10⁷ M_☉ , a=0.9, B=10⁴ G

Spectral dependence

Outgoing gamma-ray flux

Seed photons: index-2 power-law, 4 eV< E <100 keV

Angular structure similarity

Nice similarity of quantities normalized to 1 at $\theta = 0$

This allows to factor out other parameters -- next slide

Parameter scalings

Gap width

Lorentz factor

Gamma-ray luminosity
$$\begin{split} H &\sim \left(10^{10} \text{ cm}\right) \, M_7^{1/2} \, a^{-1/3} \, B_4^{1/4} \, U_{b,6}^{-1/4} \\ \Gamma_{\max} &\sim 10^3 \, M_7^{-1/2} \, a^{1/4} \, B_4^{1/4} \, U_{b,6}^{-9/10} \\ \frac{dL}{d\Omega} &\sim \left(3 \times 10^{35} \text{ erg/s/sr}\right) \, M_7^{-5/2} \, a^1 \, B_4^1 \, U_{b,6}^{-1} \end{split}$$

Parameter scalings

Gap width $3 \times 10^5 \text{ cm}$
 $H \sim (10^{10} \text{ cm}) M_7^{1/2} a^{-1/3} B_4^{1/4} U_{b,6}^{-1/4}$
1Lorentz factor $\Gamma_{\max} \sim 10^3 M_7^{-1/2} a^{1/4} B_4^{1/4} U_{b,6}^{-9/10}$ Gamma-ray
luminosity $\frac{dL}{d\Omega} \sim (3 \times 10^{35} \text{ erg/s/sr}) M_7^{-5/2} a^1 B_4^1 U_{b,6}^{-1}$

H/RBH ratio

Cascade should be efficient if H/R_{BH} « 1

AGN	Spin	Mass	Energy Density
M87	0.65	$10^{9.5} M_{\odot}$	$0.33~{ m ergs/cm^3}$
Sgr A*	0.65	$10^{6.6} M_{\odot}$	$2.1~{ m ergs/cm^3}$
MCG-6-30-15	0.98	$10^{6.65} M_{\odot}$	$3.8 imes 10^7 \ \mathrm{ergs/cm^3}$
Fairall 9	0.65	$10^{8.41} M_{\odot}$	$8.2 imes 10^4 { m ~ergs/cm^3}$
SWIFT J2127.4+5654	0.65	$10^{7.18} M_{\odot}$	$5.0 imes 10^6 \ { m ergs/cm^3}$
1H0707-495	0.98	$10^{6.7} M_{\odot}$	$8.4 imes 10^7 \ \mathrm{ergs/cm^3}$
Mrk 79	0.7	$10^{7.72} M_{\odot}$	$4.0 imes 10^5 \ \mathrm{ergs/cm^3}$
Mrk 335	0.7	$10^{7.15} M_{\odot}$	$7.5 imes 10^6 \mathrm{~ergs/cm^3}$
NGC 7469	0.69	$10^{7.09} M_{\odot}$	$3.8 imes 10^7 \ \mathrm{ergs/cm^3}$
NGC 3783	0.98	$10^{7.47} M_{\odot}$	$8.5\times 10^4~\rm ergs/cm^3$

Sgr A*, M87 gaps to scale

Figure 16. The BH radius of a maximumly spinning BH has been set to one and the gap widths have been left to scale. M87 has a luminosity of 2.7×10^{42} ergs/s, mass of $10^{9.5} M_{\odot}$, a spin of 0.65, and a magnetic field of 15 G. Sgr A* has a luminosity of 10^{37} ergs/s, mass of $10^{6.6} M_{\odot}$, a spin of 0.65, and a magnetic field of 30 G.

Puzzle: jet in 3C120

THE ASTROPHYSICAL JOURNAL LETTERS, 928:L9 (6pp), 2022 March 20

https://doi.org/10.3847/2041-8213/ac5b70

The Composition and Power of the Jet of the Broad-line Radio Galaxy 3C 120

Andrzej A. Zdziarski¹, Dakalo G. Phuravhathu², Marek Sikora¹, Markus Böttcher², and James O. Chibueze^{2,3}
 ¹Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warszawa, Poland; aaz@camk.edu.pl
 ²Centre for Space Research, North-West University, Potchefstroom 2520, South Africa
 ³Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Carver Building, 1 University Road, Nsukka 410001, Nigeria Received 2022 February 22; revised 2022 March 7; accepted 2022 March 7; published 2022 March 25

Inferred pair production rate
$$2\dot{N}_{+} \approx 3.9^{+6.3}_{-2.8} \times 10^{49} \left(\frac{R_{\text{hot}}}{10R_{\text{g}}}\right)^{-1} \left(\frac{R_{\text{jet}}}{R_{\text{hot}}}\right)^{2} \text{s}^{-1}$$

(1) Simulations yield $n_e \sim 10^{-3} \text{cm}^{-3}$ hence $\dot{n}_e \sim n_e c R^2 \sim 10^{35} \text{s}^{-1} \ll 10^{49}$

(2) Maximum estimated yield assumes that all gamma-ray flux is converted into pairs

 $L_{\gamma} \sim 3 \times 10^{36} \text{erg/s}$ is equivalent to $\dot{n}_e \sim 10^{42} \text{s}^{-1} \ll 10^{49}$

Why the discrepancy?

Conclusions

- jet composition
- gap structure
- gap emission
- Sgr A*, M87
 - 3C120
 - beware

- leptons
- jet's "electric switch" cascade (photon SED, B, a)
 - interesting & useful scalings obtained
 - nsAGN are observable* ("not-so-ActiveGN")
 - near-threshold gaps --> affect jet formation
 - obs. vs theor. lepton production too large?
 - 1D, fixed B, fluid e+e-, approx Compt, pair prod.

*Fermi can see ~ 10^{39} erg/s at 1 Mpc at 100 MeV, Can see nsAGN: M ~ 10^6 , B ~ 10^4 , U_b <~10 at 10 Mpc