Classipy GRBs: Identification of Extended Emission Gama–Ray Bursts Candidates Using Machine Learning

Authors:

M. Sc. Keneth Garcia Cifuentes Dr. Rosa L. Becerra (Presenter) Dr. Fabio De Colle

Relativistic Fluids around Compact Objects May 5, 2025

TOR VERGATA

Funded by the European Union

European Research Council

Introduction **CURRENT CLASSIFICATION**

The identification of subclasses in the GRBs is evidenced by plotting the histogram of its duration T90 and its cut-off at 2 seconds

T90 interval is defined by the time at which 5% and 95% of the total counts have been detected.

- Isolated progenitors?
- Instrumental selection effects

So...

...the classification is not perfect!

Objectives **Classification of GRBs**

USING A MACHINE LEARNING APPROACH WE COULD:

- Find correlations based on GRBs' light curves or their features.
- Associate them with their progenitors and subjacent physical processes.
- Provide a simple way to characterize any event concerning the total sample rapidly.

Research Timeline

 Uses datasets from Swift/BAT, BATSE, and Fermi GBM • Discern two groups of GRBs within the first burst second

• Confidence analysis, EE GRBs cannot be robustly classified

• Found KN-associated GRBs are located in separate clusters

Data

THE NEIL GEHRELS SWIFT OBSERVATORY

Dataset

1527 light curves of GRBs from Swift/BAT Available in: *swift.gsfc.nasa.gov/results/batgrbcat/*

	0.5 -	
alaran dalaman dalaman Manana dalaman d	0.0 -	
	0.5 -	
an a state for a first for the state of the	0.0 -	det
	0.5 -	/sec/
alan balangan terten balan basa pata Pangalan terten balan basa pata	0.0 - 0.5 -	ounts/
	0.0 -	ö
	2 -	
	0 -	
-200 -		

Example: GRB060614 light curve in 64ms

Data Pre-processing

GRBs vary significantly in duration, it is essential to standardize the data set of each event in such a way that preserves intrinsic properties but removing differences without a physical origin **1**.

2. Reduce Noise

[1] Jespersen et al. (2020) ApJL, 896, L20.

1. Limit out of duration intervals

3. Normalize by total fluence of each event

4. Standardize the size of events: Zero-pad

5. Perform Discrete Fourier Transform

ABOUT

,9

t-SNE is a popular non-linear dimensionality reduction technique used for visualizing high dimensional data sets.

ADVANTAGES

t-SNE has an impressive ability to create compelling twodimensional maps from data with hundreds or even thousands of dimensions.

t-SNE in a nutshell

DISADVANTAGES

t-SNE doesn't always produce similar output on successive runs, and there are additional hyperparameters related to the optimization process.

Classification Results

Classification Properties

Key Points

- Similar to duration-based classification
- It is based on light curve properties, instead of one single parameter

Garcia-Cifuentes, K. et al. (2023)

Extended **Emission GRBs**

Key Points

Hybrid events, as EEGRBs, appears to be located on the edge of the diagrams.

Steinhardt et al.(2023) state:

"Tiny groups or individual objects" with unique properties can be attached to the most similar group"

through t-SNE maps

Garcia-Cifuentes, K. et al. (2023)

Ultra Long GRBs

A nearly complete sample of Swift-detected GRBs with measured redshifts. Categorizing the sample to Bronze, Silver, and Gold by fitting a Gaussian function to the log-normal of T90 duration distribution

- Magnetar engine
- BH engine

Figure 4. t-SNE distribution map for *Swift*-BAT GRBs 64 ms binned light curves are grouped into two main classes. Green and orange colored circles represent our Silver and Bronze sub-samples, respectively. Red and magenta squares represent the Gold and Diamond sub-samples. GRB 221009A is shown with a red star.

Ror et al. ApJ, 2023

EEGRBs Candidates

Nearest neighbors to previous EE:

- GRB 200716C
- GRB 180618A
- GRB 080123

Our method is correct

Garcia-Cifuentes, K. et al. (2023)

ClassiPyGRB

Open-source Python3 package to download, process, visualize and classify Gamma-Ray-Bursts (GRBs) from the Swift/BAT Telescope

ClassiPyGRB Repository

https://github.com/KenethGarcia/ClassiPyGRB

Contact info

Thank You!

Machine Learning Explorations in GRB Studies

rosa.becerra@roma2.infn.it keneth.garcia@correo.nucleares.unam.mx fabio@nucleares.unam.mx

ClassiPyGRB Repository

https://github.com/KenethGarcia/ClassiPyGRB/

Classification Framework Convergence

There is a clear correlation between each GRB duration and its position on the map Iteration: 0

Credits: ClassiPyGRB

Hyperparameter Optimization Perplexity

"It is related to the number of nearest" neighbors that is used in other manifold learning algorithms"

Key Points

- Duration structure remains independent
- At low perplexities, the cluster separation increases

Credits: ClassiPyGRB

0<u>9</u>10(T₉₀)

Hyperparameter Optimization Learning Rate

The learning rate controls the step size of the gradient updates.

Key Points

- Duration structure remains independent
- At low perplexities, adjusting learning rate plays a significant role in separating clusters

Credits: ClassiPyGRB

