GRB Jets in CSM Dynamics, Breakout, and **Diversity of Transients** Hamid Hamidani (Tohoku University, Japan)

With: Kazumi Kashiyama, Masaomi Tanaka, Kunihito loka, Yuri Sato, & Shigeo S. Kimura

> **References:** https://arxiv.org/abs/2503.16242 https://arxiv.org/abs/2503.16243

Relativistic Fluids around Compact Objects, May 5-7, 2025

Collapsar Model

Question: How common are Long GRB jets?

Observer: Long GRB

Stripped Wolf-Rayet Star

Low Luminosity GRBs

- Rate of LGRBs: ~ $1 \text{ Gpc}^{-3} \text{ yr}^{-1}$
- Rate of low luminosity GRBs (LLGRBs): ~ $10^2 10^3$ Gpc⁻³ yr⁻¹

Question: What is the difference between LLGRBs & LGRB?

Credit: Amati+09; Li+07

One possibility: "CSM"

Key Point: Even a low-mass CSM can significantly affect the jet

Credit: Nakar 15

Evidence of CSM in Stripped Envelope SNe

S. IMMLER,^{1,2,3} M. MODJAZ,⁴ W. LANDSMAN,¹ F. BUFANO,^{1,5} P. J. BROWN,⁶ P. MILNE,⁷ L. DESSART,⁷ S. T. HOLLAND,^{1,2,8}

RYAN J. FOLEY, NATHAN SMITH, MOHAN GANESHALINGAM, WEIDONG LI, RYAN CHORNOCK, AND ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA; rfoley@astro.berkeley.edu, nathans@astro.berkeley.edu,

S. BENETTI,¹ E. CAPPELLARO,¹ M. TURATTO,¹ S. TAUBENBERGER,² A. HARUTYUNYAN,¹ AND S. VALENTI^{3,4}

SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium*

Hanindyo Kuncarayakti^{1,2}, Keiichi Maeda^{3,4}, Christopher J. Ashall^{5,6}, Simon J. Prentice⁵, Seppo Mattila², Erkki Kankare⁷, Claes Fransson⁸, Peter Lundqvist⁸, Andrea Pastorello⁹, Giorgos Leloudas¹⁰, Joseph P. Anderson¹¹, Stefano Benetti⁹,

ias-Rosa⁹, LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures Massive stars exploding in a He-rich circumstellar medium – II. The transitional case of SN 2005la

Peter Clark[®],¹^{*} Kate Maguire,^{1,2} Cosimo Ir

Two stripped envelope supernovae with circumstellar interaction

But only one really shows it

J. Sollerman¹, C. Fransson¹, C. Barbarino¹, C. Fremling², A. Horesh³, E. Kool¹, S. Schulze⁴, I. Sfaradi³, S. Yang¹,

SWIFT AND CHANDRA DETECTIONS OF SUPERNOVA 2006 jc: EVIDENCE FOR INTERACTION OF THE SUPERNOVA SHOCK WITH A CIRCUMSTELLAR SHELL

SN 2006jc: A WOLF-RAYET STAR EXPLODING IN A DENSE He-RICH CIRCUMSTELLAR MEDIUM

SUPERNOVA 2002ic: THE COLLAPSE OF A STRIPPED-ENVELOPE, MASSIVE STAR IN A DENSE MEDIUM?

A. Pastorello,^{1*} R. M. Quimby,²[†] S. J. Smartt,¹ S. Mattila,^{1,3} H. Navasardyan,⁴

CrossMark

Let's Systematically investigate: **GRB-Jet dynamics in CSM**

Credit: Nakar 15

Parameters

Extended CSM

GRB Progenitor

 $R_{\star} \sim 10^{10} - 10^{11}$ cm

 $M_{\star} \sim 20 M_{\odot}$

<u>Jet</u>

E_{eng}: Jet energy

teng: Jet timescale

 θ_0 : Opening angle

<u>CSM</u>

R_{CSM}: Radius

M_{CSM}: Mass

n: Power-law index ($\rho \propto r^{-n}$)

Values

Conventional LGRBs

 $\sim 10^{52} \text{ erg}$ $\sim 10^2 \text{ s}$ $\sim 10^{\circ}$

?

?

 ~ 2 : Constant mass loss

Collapsar Jet

Framework [Bromberg+11]

Jet collimation:

$$\begin{aligned} r_{\rm c}(t) &= c\beta_{\perp}(t-t_0), \\ \beta_{\perp} &= \sqrt{\frac{P_c}{\rho_a(r_{\rm h}/2)c^2}} \\ P_c &= \eta \frac{E_{\rm c}}{3V_{\rm c}}, \\ \Sigma_{\rm j}(t) &= \frac{L_{\rm j}\theta_0^2}{4cP_{\rm c}}, \end{aligned}$$

Jump conditions: $\tilde{L} \simeq \frac{L_j}{\Sigma_j(t)\rho_a c^3 \Gamma_a^2}$, Jet head velocity: $\beta_h = \frac{1}{1 + \tilde{L}^{-1/2}}$

Following Bromberg et al. (2011):

$$\frac{\beta_h^3}{(1-\beta_h)^5} = C,$$

where:
$$C = \frac{2^6 \eta N_s^4}{c^3} \frac{E_{eng}}{t_{eng}\theta_c^4}$$

No analytic solution!

=> Numerically??

Jet head velocity β_h

 $\frac{R_{\rm CSM}}{2} \propto \frac{R_{\rm CSM}}{M_{\rm CSM}}$

Universal Solution

Solution for non-relativistic jet head with $C \ll 1$

 $\beta_h \approx C^{1/3}$

Solution for relativistic jet head with $C \gg 1$

 $\beta_h \approx 1 - C^{-1/5}$.

Blended together to:

$$\beta_h \approx \frac{\left[C^{1/3} + (1 - C^{-1/5})(C_{t})\right]}{1 + (C/C_{t})^b}$$

least squares fitting gives: $C_t \approx 0.66$, $\& b \approx 0.79$.

Universal Solution

Jet head velocity

 $C \propto -$

$$\frac{\mu_{\rm eng}}{t_{\rm eng}\theta_0^2} \frac{n_{\rm CSM}}{M_{\rm CSM}}$$

CSN parameters (for a conventional LGRB jet)

CSM mass $M_{
m CSM}$

Small

Jet head velocity

New expression for the breakout time

Hamidani+25:
$$t_{\rm b} \approx 430 \, {\rm s} \left(\frac{\theta_0}{10^{\circ}}\right)^{\frac{2}{3}} \left(\frac{E_{\rm eng}/t_{\rm eng}}{10^{50} \, {\rm erg}}\right)^{-\frac{1}{3}} \left(\frac{R_{\rm CSM}}{10^{13} \, {\rm cm}}\right)^{\frac{2}{3}} \left(\frac{M_{\rm CSM}}{0.1M_{\odot}}\right)^{\frac{1}{3}} \left(\frac{1-\beta_{\rm h}}{0.23}\right)^{-\frac{5}{3}}$$

Bromberg+12:

$$t_b \simeq 15 \text{ s} \left(\frac{\theta}{10^\circ}\right)^{2/3} \left(\frac{L_{\text{iso}}}{10^{51} \text{ erg s}^{-1}}\right)^{-1/3} \left(\frac{R_*}{5 R_{\odot}}\right)^{2/3} \left(\frac{M_*}{15 M_{\odot}}\right)^{1/3}$$

Breakout times

Energy weighted With $\langle \log(\Gamma\beta) \rangle = \langle \log(\Gamma\beta) \rangle_{j} \frac{E_{j}}{E_{eng}} + \langle \log(\Gamma\beta) \rangle_{c} \frac{E_{c}}{E_{eng}}$ Jet Cocoon

Typical $\Gamma\beta \equiv \Gamma\beta$ of the system

$\overline{\Gamma\beta} = 10^{\langle \log(\Gamma\beta) \rangle}.$

Diversity of transients

Summary I

- Fully analytic model for jet dynamics in CSM
 - Jet/CSM parameters => β_h , t_b , ... => Jet/Cocoon properties
 - Implemtented in Python: <u>https://github.com/</u> hamidhamidani/cocoon-cooling-model
- Constraints on the CSM in LGRBs/LLGRBs

EP240414a [X-ray]

EP240414a [X-ray]

Optical [EP240414a]

Optical [EP240414a]

Radio [EP240414a]

Credit: Bright+24

Radio [EP240414a]

Credit: Bright+24

Our scenario [EP240414a]

Parameters [EP240414a]

- Jet: Conventional LGRB jet
- CSM: ~ $0.03 M_{\odot}$ and 3×10^{13} cm
- Outcome: Barely failed jet
 - Mildly relativistic jet-cocoon $\Gamma \sim 5-20$ and $\sim 10^{50}$ erg (Afterglow)
 - Non-relativistic cocoon $\sim 10^{52}$ erg (thermal cooling emission)

Results [EP240414a]

SED of EP240414a

Observations (Absorbed)

Credit: Dalen+25; HH+25

Summary I

- EP240414a: intermediate prompt & afterglow properties relative to LGRBs/LLGRBs
- LGRB jet weakened in an extended CSM?
 - An intermediate-class jet/GRB?
- A conventional LGRB jet in a CSM of ~ $0.03 M_{\odot}$ and ~ 3×10^{13} cm can explain X-ray / Optical / Radio photometry / SED...
 - May naturally explain the weak/soft prompt emission