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GRB-jet (penetrating binary neutron star merger ejecta)
Nagakura et al. 2014
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Multi-dimensional core-collapse supernova simulations
(Neutrino-radiation-hydrodynamic simulations) 2014~

Full Boltzmann neutrino transport
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Nagakura et al. ApJL 2019

Two-moment neutrino transport
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Today’s topic:

“Quantum kinetics of neutrinos in dense astrophysical environments”

Neutrino transport with Core collapse supernova (CCSN)
neutrino oscillation (flavor conversion) Binary neutron star merger (BNSM)



Neutrino-heating mechanism for CCSN explosions

Janka 2001
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BNSM simulation
by Kenta Kiuchi
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Lepton number transport by neutrinos is
a key player to determine r-process nucleosynthesis.
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A kinetic framework is essential for modeling of neutrino radiation field

Figure by Janka 2017
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Boltzmann neutrino transport
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(Time evolution + Advection Term) (Collision Term)

6-dimensional phase space
AN = f(t,p,z)d’pd’x

® Neutrino
Conservative form of GR Boltzmann eq.
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(Real Space) Shibata, Nagakura, Sekiguchi, and Yamada (2014)
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Neutrino oscillations

There are many experimental evidences that neutrinos
can go through flavor conversion.

Neutrinos have at least three different masses.

Flavor eigenstates are different from mass eigenstates.

Credit:BBC
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Neutrino oscillation with a plane-wave picture
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Boltzmann transport becomes a
reasonable approximation.



Neutrino oscillation induced by self-interactions

Pantalone 1992

Sea of neutrinos

1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy
to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM.

3. Collective neutrino oscillation induced by neutrino-self interactions commonly
occurs in CCSNe and BNSM environments.
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Rich flavor-conversion phenomena
driven by neutrino-neutrino self-interactions

- Slow-mode (Duan et al. 2010) Vacuum: =

Matter: ) = v2Gpn,,
- Energy-dependent flavor conversion occurs. Self-int: |, = V26,
= The frequency of the flavor conversion is proportional to -\

- Fast-mode (FFC) (sawyer 2005)

* Collective neutrino oscillation in the limit of w = 0.
- The frequency of the flavor conversion is proportional to
= Anisotropy of neutrino angular distributions drives the fast flavor-conversion.

- Collisional flavor instability (CFl) (Johns 2021)

= Asymmetries of matter interactions between neutrinos and anti-neutrinos

drive flavor conversion. r-r uS r+r

Im £+ [ Matter-interaction rate

p: —
2~ (uD)>+4lps 2
- Matter-neutrino resonance (Malkus et al. 2012)

* The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).

A+ pf ~ Jw]

- Essentially the same mechanism as MSW resonance.
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FFC and CFl in CCSNe

Various mechanism in triggering FFC  Nagakura et al. 2021

< catt'E*ﬁ“g"'

Shock wave Type | crossings [Exp-only]

. (nucleon-scattering + a~1 + cold matter)
Type Il crossings

(neutrino absorption)

Type |l crossings [Exp-only]
(asymmetric v emission)

< Any type of crossings (PNS convection)

Time ~1s




FFCin BNSMs

Nagakura et al. (arXiv:2504.20143)
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CFl in BNSMs

Nagakura et al. (arXiv:2504.20143)
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Quantum Kinetics neutrino transport: Vlasenko et al. 2014, Volpe 2015,
Blaschke et al. 2016, Richers et al. 2019

Advection terms Collision term Oscillation term
(Same as Boltz eq.)

fisnota
“distribution function”

Hamiltonian

Density matrix
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- Global simulations:

< < < < < < <

General-relativistic quantum-kinetic neutrino transport (GRQKNT)
Nagakura 2022
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Fully general relativistic (3+1 formalism) neutrino transport
Multi-Dimension (6-dimensional phase space)

Neutrino matter interactions (emission, absorption, and scatterings)
Neutrino Hamiltonian potential of vacuum, matter, and self-interaction

3 flavors + their anti-neutrinos

Solving the equation with Sn method (explicit evolution: WENO-5th order)
Hybrid OpenMP/MPI parallelization
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- FFC in CCSN  Nagakura PRL 2023

Numerical setup:

Collision terms are switched on.

Fluid-profiles are taken from a
CCSN simulation.

General relativistic effects are

! NFC(H=R=0) — taken into account.

M3F ——
M3FGR
M2F —— Three-flavor framework

M3FH

A wide spatial region is covered.

—
-
/]
v
o
o
e
T
-
N
o
ha
0
i
©
1
o
£
©
o
?
o
c
:
®
0
- =

40 60
Radius [km]

Neutrino-cooling is enhanced by FFCs » Impacts on the
Neutrino-heating is suppressed by FFCs explodability of CCSN




- FFC in CCSN  Nagakura PRL 2023

Neutrino angular distributions
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- FFCin BNSM Nagakura 2023

Y

Setup:

- Hypermassive neutron star (HMNS) + disk geometry
- Thermal emission on the neutrino sphere

- QKE (FFC) simulations in axisymmetry

- Resolutions: 1152 (r) x 384 (6) x 98 (6.) x 48 (d.)

ELN crossings are ubiquitous in this region (s 055
(Wu & Tamborra 2017)

—> How FFC changes the radiation field?

Optically thick disk
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- FFCin BNSM Nagakura 2023

\/ Appearance of flavor swap and EXZS (ELN-XLN Zero Surface):

ELN - XLN Flavor coherency
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Fast flavor swap would be ubiquitous in BNSM
Zaizen and Nagakura 2024

- Colliding-beam model

Neutrinosphere

ELN-XLN

P;= 1 : electron-type Unstable
P3: 0 . equipartition Non'Steady
P, =-1: heavy-lepton type Stable

Neutrinos undergo flavor swaps in asymptotic states.
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- BGK Subgrid model nagakura et al. 2024
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Summary

Radiation-hydrodynamic simulations under classical treatments of neutrino
kinetics have been matured in CCSN and BNSM community.

Neutrino flavor instabilities ubiquitously occur in CCSN and BNSM environments.

We developed a new GRQKNT code for time-dependent global simulations of
neutrino quantum kinetics (QKE).

Many studies demonstrate that fast neutrino-flavor conversion (FFC) and
collisional flavor instabilities give impact on fluid-dynamics and nucleosynthesis.

Subgrid models of FFC/CFI have also been developed so as to incorporate effects
of FFC/CFI into classical neutrino transport.

This field has been developing at a rapid pace, promising to reveal new features of
neutrino physics, as well as providing deeper insights into CCSN and BNSM.
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