MULTI-MESSENGER COUNTERPARTS TO GRAVITATIONAL WAVES

NICOLE LLOYD-RONNING Los Alamos National Lab

GRAVITATIONAL WAVE SOURCES

ELECTROMAGNETIC AND PARTICLE COUNTERPARTS

SIGNATURES FROM STELLAR COMPACT OBJECT BINARIES SIGNATURES FROM SINCLE STELLAR COLLAPSE — R-PROCESS IN COLLAPSAR JETS SIGNATURES FROM BBH IN ACCRETION DISKS SIGNATURES FROM EXTREME MASS RATIO INSPIRALS SIGNATURES FROM MBH/SMBH BINARIES

WHAT NEXT?

GRAVITATIONAL WAVES

MULTI-MESSENGER ASTRONOMY

GRAVITATIONAL WAVE SOURCES

THE SPECTRUM OF GRAVITATIONAL WAVES

Frequency / Hz

DOUBLE NEUTRON STAR

NEUTRON STAR-BLACK HOLE

NEUTRON STAR-WHITE DWARF,

WHITE DWARF-BLACK HOLE

DOUBLE BLACK HOLE

COMPACT OBJECT MERGERS

SHORT GAMMA-RAY BURST LONG GAMMA-RAY BURST LOW LUM. GAMMA-RAY BURST

- PECULIAR TRANSIENT

Aaron M. Geller, Northwestern/ CIERA/IT' Research

MASSIVE STAR COLLAPSE

Supernova LONG GAMMA-RAY BURST SHORT GAMMA-RAY BURST KILONOVA FROM **R-process in Grb jets!**

NON-SPHERICAL MASS DISTRIBUTION

EMISSION POWERED BY RADIOACTIVE DECAY.

KILONOVAE

KILONOVAE ASSOCIATED WITH SHORT GRBS - GRBI70817 DOUBLE NEUTRON STAR MERGER ORIGIN

KILONOVA LIGHT CURVES (MODELS AT DIFFERENT VIEWING ANGLES TROJA ET AL 2017

KILONOVA SPECTRA AT DIFFERENT TIMES (DATA IN BLACK) PIAN ET AL 2017

KILONOVAE AND R-PROCESS IN DOUBLE NEUTRON STAR MERGERS

KILONOVAE ASSOCIATED WITH LONG GRBS - GRB230307A

Clear emission feature seen at ~2.14 microns at both 29 and 61 days, consistent with TeIII. Redder features compatible with lines from Se III and W III

KILONOVAE ASSOCIATED WITH LONG GRBS - GRB2I12IIA

Rastinejad et al 2022

• NOT EASY TO MAKE A LONG GRB (GRB230327, GRB2I1211A)

• STRUGGLE TO EXPLAIN THE ABUNDANCES OF VERY METAL POOR STARS IN THE MILKY WAY (E.G. C. KOBAYASHI ET AL 2023)

DOUBLE NEUTRON STAR MERGERS **AS R-PROCESS SITES:**

K-PROCESS IN COLLAPSAR JETS!

NEUTRONS FROM HADRONIC PHOTO PRODUCTION IN COLLAPSAR JETS

Mumpower, Lee, L-R. et al. 2025

ANL-Osaka Photohadronic Cross Section

 $r_{\rm n} = n_{\rm p} \Phi(E_{\gamma})\sigma_{\gamma \rm p}(E_{\gamma})dE_{\gamma}$

Model jet-cocoonenvelope region

 $T(t) = T_o(\rho(t)/\rho_o)^{\gamma-1}$

 $\rho_{env}(r) = \rho_o(r/R_g)^{-\delta}(1 - r/R_*)^3$

 $\overline{\rho_{head}} = \overline{\epsilon \rho_{env}}$

R-PROCESS AT JET HEAD IN A COLLAPSAR!

Sim A: Light rprocess

Sim B: Robust rprocess

Sim C: i-process

Mumpower, Lee, L-R. et al. 2025

Courtesy Marko Ristic, Oleg Korobkin

GRB 2II2IIA

Courtesy Marko Ristic, Oleg Korobkin

ULTRA HIGH ENERGY GAMMA-RAYS IN GRBS

Time of onset is key

BINARY BLACK HOLE MERGERS IN AGN DISKS

Breakout emission from a solitary black hole embedded in an AGN disk - produced episodically after replenishment of gas to the black hole (see Tagawa et al. 2022)

Breakout emission from a merger remnant spin reoriented after merger, and the jet again collides with unchecked AGN gas, producing emission after the merger.

Spectra of bbh mergers in agn disks

MEANWHILE, TIMESCALE AND LIGHTCURVES DEPENDS ON MANY THINGS...

BBH MERGERS IN AGN DISKS: GRB 19019A

Long GRB (T90 ~ 65s) located < 100pc to nucleus of old (>1Gyr) galaxy, no star formation, z=0.248. GRB luminosity more consistent with sGRB. (Levan et al. 2023)

Fit well by external shock/ reverse shock scenario: BBH merger in very dense medium e.g. AGN disk. (Lazzati et al. 2023)

Frequency / Hz

10⁶

ÉXTREME MASS RATIO INSPIRALS AND FRBS

COSMIC COMB; ZHANG 2017

Ram pressure of stream > magnetic pressure of magnetosphere. Field modified, large energy release on short timescales — FRB!

Case	$M_{\rm BH}$ (10 ⁵ M_{\odot})	f (10 ⁻⁶)	$B_{\rm S}$ (10 ¹⁴ G)	P _S (s)	B _r (mG)	$a_{ m uplim}$ (10 ⁻⁷ pc)	e_0	RM_{lowlim} (rad m ⁻²)	DM (pc cm ⁻³)	Zmax	t _{merge} (yr)
1	1	10	1	2	10	2.54	0.5	1.99×10^{5}	25	0.03	61
2	10	1	1	2	1	8.05	0.65	$1.99 imes 10^4$	25	0.04	62
3	10	10	1	2	3.2	25.4	0.9	2.01×10^{5}	79	0.01	6190
4	10	100	1	2	10	80.5	0.99	1.99×10^{6}	250	0.0005	1.56×10^{7}
5	100	10	1	2	1	80.5	0.99	1.99×10^{5}	250	0.004	5890

EMRI-FRBs: COSMIC COMB AND GW SIGNAL

EMRI-FRBS: COSMIC COMB AND EM SIGNAL

FRB 20190520B; Niu et al. 2022

THIS MODEL CAN ACCOMMODATE REPEATERS

BINARY WHITE DWARF MERGERS

Amaro-Seoane et al. 2017

Many potential EM counterparts depending on mass ratio, tides, mass transfer, etc

IMBH/MBH BINARIES

Amaro-Seoane et al. 2017

Image(s) reproduced with permission from Tang et al. (2018), copyright by the authors

Surface density around equal mass $M_{BH} = 10^6 M_{\odot}$ BBH over timescale of ~ 1 week (from Tang et al 2018) reproduced in Bogdanavić et al 2022)

ÉM SIGNALS FROM MBH BINARIES

Poynting Luminosity in near vacuum for merger with $M_{BH} = 10^8 M_{\odot}$, $B = 10^4 G$; Merger at t=0

Image(s) adapted from [left] Palenzuela et al. (2010b), copyright by AAAS; and [right] from Kelly et al. (2017), copyright by APS

Poynting Luminosity for merger in radiatively inefficient magnetized gas, $\rho = 10^{-13} gcm^{-3}$; 1t = 0.14hr; 1L $= 10^{44} ergs^{-1}$

EM SIGNALS FROM

Evolution of iron K-alpha profile for equal mass binary, different orbital phases. Two slowly spinning BH with separation a=2000M, e=0.75.

Spectrum from non-spinning $M_{BH} = 10^6 M_{\odot}$ BBH, 2nd orbit, initial separation of 20 M, accretion at half Eddington, view is face on

Frequency / Hz

EM SIGNALS FROM SMBH BINARIES

Optical and UV light curve, period ~ 1884 days, $M_{BH} \sim 10^9 M_{\odot}$; Graham et al. 2015

SMBH binary spectra at different orbital periods (solid line); Tanaka et al. 2012

NEXT ERA OF GW OBSERVATORIES OPENS THE WINDOW TO OUR UNIVERSE MUCH WIDER

NOVEL MECHANISMS FOR R-PROCESS HEAVY ELEMENT PRODUCTION, NEW MECHANISMS FOR FRBS, ...

UNDERSTANDING EM COUNTERPARTS TO THE GW EMISSION IS NECESSARY TO UNRAVELLING THE PHYSICS OF OUR UNIVERSE

THANK YOU!

Sim B: Robust r-process

- $\tau_1 = \tau_2 = 3.5 \times 10^2 s$
- $\rho_o = 8.9 \times 10^5 g/cm^3$

Sim C: i-process $T_{o} = 0.1 x 10^{9} K$ $\xi = 3.5$ $r = 5.3x10^{11}cm$ $\tau_1 = \tau_2 = 3.5 x 10^2 s$ $\epsilon = 282.2$ $\rho_o = 6.5 x 10^3 g/cm^3$ $Y_{\rho} = 0.0035$

Mumpower, Lee, L-R. et al. 2024

CONTRIBUTION FROM WHITE DWARF-BLACK HOLE MERGERS

22	23	24	25	26
Ti	V	Cr	Mn	Fe
Titanium	Vanadium	Chromium	Mangan	Iror
40	41	42	43	44
Zr	Nb	Mo	Tc	R
Zirconium	Niobium	Molybde	Techneti	Ruther
72	73	74	75	76
Hf	Та	W	Re	0
Hafnium	Tantalum	Tungsten	Rhenium	Osmi
104	105	106	107	108
Rf	Db	Sg	Bh	H
Rutherfo	Dubnium	Seaborg	Bohrium	Hassi

- Alkali metals
- Metalloids Ο
- Ο Actinides

- Alkaline earth metals O Transition metals O Post-transition metals Noble gases
- Reactive nonmetals Ο
- Unknown properties O

70 65 71 Eu Ho Er Yb Dy Tb Gd Tm Lu Lutetium Gadolini... Terbium Dysprosi... Erbium Thulium Ytterbium Europium Holmium 95 96 102 103 97 100 101 Es Bk Am Cm Cf Fm Md No Lr Berkelium Californi... Einsteini... Fermium Mendele... Nobelium Lawrenc..

> Lanthanides Ο

NEUTRONS FROM HADRONIC PHOTO PRODUCTION IN COLLAPSAR JETS

Mumpower, Lee, L-R. et al. 2024

Figure 4. A simplified hadronic reaction network starting with 100% protons (yellow). Neutrons (red) and pions (green) are produced nearly instantaneously. Baryon number is conserved (solid black line), despite neutrons escaping to another zone (blue); Meson number is not a conserved quantity (green).

