

The structure of relativistic jets and their magnetic fields

Asaf Pe'er

Bar Ilan University

Relativistic Fluids around Compact Objects

May 2025

Summary

- 1) Relativistic jets are (i) ubiquitous; (ii) fragmented; (iii) filled with radiators; (iv) structured
- 2) Two leading models for jet formation:
 (i) BZ→ Pointing-dominated → need to entrain the jet with material
 (ii) Collapsar → neutrino/ photon dominated (better align with fits).
 Numerical studies lack crucial physics
- **3)** Energy dissipation: internal shocks (efficiency), magnetic reconnection.
- 4) Photosphere: (i) solves efficiency issue; (ii) photon energy gain by repeated scattering; (iii) polarization
- 5) Flat radio spectrum in AGNs/XRBs can be obtained from a Maxwellian

What do we know about astrophysics Jets?

- Jets are observed in a wide range of accreting systems
- Active galactic nuclei (AGNs): M ~ 10⁶ - 10⁹ M_☉
 X-Ray binaries (XRBs), GRBs: M ~ 10 M_☉
- Evidence for jets in non-BH systems

XRBs: GRS 1915+105 Mirabel & Rodriguez, 1994

Jets are ubiquitious
 They can be (likely) fragmented

AGNs: Cygnus A "Science shot" Image. X (blue) / Radio (orange) Image: McKean & Wise, Science, 2012

What do we know about astrophysics Jets ? Evidence for pair annihilation line in the BOAT GRB221009A Max fluence = 0.21 +- 0.02 erg / cm² \rightarrow E_{iso} > 10⁵⁵ erg (in γ -rays !)

Burns + 2023; Lesage+23; Ravasio et. al. (2024)

Opacity argument: $\gamma \gamma \rightarrow e^{\pm}$ (GeV) [LAT] photons necessitate Γ >100 Krolik & Pier 1991, Fenimore+93, Woods & Loeb 1995...

 $\Gamma = E/Mc^2$

What do we know about astrophysics Jets? Evidence for pair annihilation line in the BOAT GRB221009A Max fluence = 0.21 +- 0.02 erg / cm² \rightarrow E_{iso} > 10⁵⁵ erg (in γ -rays !) SBPL+GaussLine 10^{5} SBPL ¹s to 10⁴ GaussLine NaI 8 BTI [erg/cm²/s] 0-2 NaI 4 100 200 NaI 6 Time since GBM trigger [s] BGO 1 [1] (0-8 s) [3] (195-206 s) [5] (280-300 s) BGO 0 [2] (183-195 s) [4] (206-216 s) [6] (300-320 s) ----- Gaussia [7] (320-340 s) SRPI [8] (340-360 s) ц 10-5 νF_p [erg cm⁻² s⁻¹] \simeq GRB 221009A - Fermi/GBM [280-300 s] Fit with SBPL+Gaussian Line 10^{2} 10^{3} 10^{1} 10^{4} E [keV] 10^{2} 10^{4} hν [keV] hν [keV] Pe'er & Zhang, 2024 Burns + 2023; Lesage+23; Ravasio et. al. (2024) Opacity argument: $\gamma\gamma \rightarrow e^{\pm}$ (GeV) [LAT] photons necessitate $\Gamma \rightarrow \tau 00$ $D = \frac{1}{\Gamma(1 - \beta \cos \theta)} > 100$ Krolik & Pier 1991, Fenimore+93, Woods & Loeb 1995... 3. Jets are filled with radiators (GRBs) $\Gamma = E/Mc^2$

4. Velocity direction $\theta \sim 1/\Gamma$

Chercher l'énergie

Fireball Model: long GRBs

Rees & Meszaros, 1992, 1994, 2001

Jet production: two leading models

AGNS, XRBS: Blandford-Znajek (1977) Extraction of energy from Kerr black holes 445

- B-field lines confined by disk
- BH rotation → helical magnetic springs; expand by self-pressure
 → accelerate plasma
 - \rightarrow accelerate plasma
- ⇒BH rotation energy converted into jet (strongly depends on disk state & configuration of B-field)

GRB's: Collapsar (?) (Woosley 1993) Mergers (Eichler+1989)

- Collapse of massive (~30 M_☉ WR), rotating star
- Viscous accretion \rightarrow strong heating
- Thermal vv-annihilating $v + \overline{v} \rightarrow e^+ + e^-$ (preferentially around the axis)
 - \Rightarrow formation of a relativistic jet

Blandford & Znajek mechanism: classical analogue rotating conductor in magnetic field

Lorentz force
$$F = q(r\Omega \times B)$$

Voltage

ge
$$V = \int_{0}^{R} d\rho \rho \Omega B = \frac{1}{2} \Omega B R^{2} = \frac{\Omega \Phi_{B}}{2\pi}$$

$$Power = \frac{V^{2}}{4R_{c}} = \frac{\Omega^{2} \Phi_{B}^{2}}{16\pi^{2}R_{c}}$$

B- field lines: attached to the disk Resistivity: inpedance of free space Voltage: $\Omega B R^2 \sim 10^{20}$ Volts for $10^9 M_{\odot}$

→ Accelerate electrons, produce a e[±] pair cascade (electric circuit)

Consequence: no charged BH in nature

Numerical simulations: accretion disks & jets

• Early 2000's: GRMHD codes

Koide, Komissarov, De Villiers, Hawley, Gammie, McKinney, Noble, Fragile, Tchekhovskoy, Porth, Shibata, Del Zanna, Zachariah, Shapiro...

2003: HARM (Gammie+)

- Many important applications to relativistic jets
- 2014: Radiative-MHD (GRRMHD)

Oshuga: Radiative-MHD (pseudo-Newtonian disks) KORAL (Sadowski), HARMRAD (McKinney), Heroic (Narayan+), INAZUMA (Asahina & Ohsuga)

- In parallel: radiative transfer codes (Astroray, GRMONTY (2009), BHLight, GRTrans, CARTOON...)
- 2017: Use of GPU, AMR (Chandra+, Liska+, Begue, Pe'er et. al., 2023)
 -Applications to M87

cuHARM: why a new code ?

- Independently developed:
 - ✓ Well understood
 - Easy to modify
 - Highly optimized

Additional physical ingredients:

- Radiation (currently under construction)

Unconstrained mesh at the pole:
 enables accurate calculations of jets –
 high resolution without time step reduction.
 (future construction)

Bégué, Pe'er et. al., 2023 Zhang, Bégué, Pe'er & Zhang., 2024

Disk and jet evolution (MAD) - using cuHARM

Highly optimized: > 2* 10⁸ cells update /s on H100

Bégué, Pe'er et. al., 2023 Zhang, Bégué, Pe'er & Zhang., 2024

Angular momentum flux

$$j_{total}^{i}(r,\theta) = \left\langle T_{\phi}^{i} \right\rangle_{\phi,t} \qquad j_{total}^{i}(r,\theta) = j_{stress}^{i}(r,\theta) [Maxwell + Reynolds] + j_{adv}^{i}(r,\theta)$$

 \succ Jet is widest for a=0;

prograde disks produce wider jets than retrograde (<20 rg); retrogrades are wider for r>20rg

► Retrograde disks produce highly variable jets

-BUT -plenty of missing physics

GRMHD: limitations

- Plenty of missing physics: neutrino, photons, heavier elements....
- Rad. Transfer highly degenerated; often limited to thermal, rad. angular distribution is not resolved.
- Most popular schemes (closure schemes) can't handle intermediate optical depths
- Rad. Cooling is not always physical ("target h/r")
- Unknown initial conditions: often "merge" (remapping) simulations
- Emerging jets are always pointing-flux dominated:
 - flooring (numerical)
 - where is material entrained into the jet ?
 - magnetic energy dissipated (requires non-ideal MHD) ?
- Faraday rotation measurements at large radii: helical B-fields, sub-dominant in simulations

GR-R-MHD vs. rad. transfer

• GRRMHD: (e.g., HARMRAD, HAMR)

Add rad. stress-energy tensor \rightarrow incorporate rad. In the dynamics. integrate over $(\theta, \phi, v) \rightarrow$ Moments of rad. transfer Need to close the set of equations; various schemes, most popular – "M1" (alternative: flux-limited diffusion, FLD).

• Advantage of M1 (minimum entropy): correct answer for $\tau \rightarrow \infty, \tau \rightarrow 0$

• Disadvantages:

not clear it is accurate for any τ ; requires the existence of a frame in which rad. is isotropic

- does not exist in jets !
- Thermal distribution.
- not good for neutrino transport
- cuHARM- see talk by Begue
- Ray tracing codes- (e.g., GRMONTY MC): Full GR (Kerr metric): integrate along geodesics.
 Broad-band spectrum, temporal variability
- Disadvantages:
 Optically thin plasma
 "Stand alone"
 (most schemes) assume thermal dist. of particles for absorption

Beloborodov 2011

Collapsar: jet inside collapsing star

Two requirements:

- Core collapse produces a black hole either promptly or very shortly thereafter.
- Sufficient angular momentum exists to form a disk outside the black hole (this virtually guarantees that the hole is a Kerr hole)

6.00 6.42 6.84 7.26 7.67 8.09 8.51 8.93

 MacFadyen & Woosley, 1999
 Many (Rel-MHD) models of jets propagation inside collapsing star (Aloy, Lazatti, Zhang, Mizuta, ..)
 Dynamics: shaped by topology & strength of B-field;

Woosley, 93; MacFadyen & Woosley, 1999,

Popham+99, Hager, Zhang, ...

jets are highly variable.

Rad. + neutrinos play a key role...

BUT - Initial conditions – put by hand

Neutrino contribution

In hyper accretion disks, neutrino contribution >~10⁵² erg/s

Chercher l'énergie

Fireball Model: long GRBs

Rees & Meszaros, 1992, 1994, 2001

Clumpy jets produce variable lightcurve

internal shocks

Pro's:

- Naturally expected
- Rad. From external shock / reverse shock observed → shocks are known to accelerate particles & produce B field

Co's:

- <u>conceptual</u>: lacking predictivity.
- Highly inefficient

Only the differential kinetic energy is available; Typical efficiency: \sim few % (+ conversion to γ -rays !)

Observed: E_{γ} / E_{AG} : ~50%

Guetta, Spada & Waxman, 2001

(but see talk by Granot)

Clumpy jets produce variable lightcurve

internal shocks

Hot plasmas, magnetized plasmas - are even less efficient! Typical efficiency: ~<few % (+ conversion to γ -rays !)

Pe'er, Long, Casella 2016 Bret, Pe'er et. al., 2016

Observed: E_{γ} / E_{AG} : ~50%

Alternatives: 1. Photosphere; 2. magnetic energy dissipation (magnetized jets) - [GR-MHD + non-ideal + dissipation...]

Production of thermal photons: recollimation shocks (?)

Lorentz factor -50 -20 -10 4 y (10¹⁰ cm) 2 2D HR 7.7 s0 -2 0 2 x (10¹⁰ cm) Figure 13. Lorentz factor stratification map for the 2D model at t = 7.7 s. (A color version of this figure is available in the online journal.)

THE ASTROPHYSICAL JOURNAL, 767:19 (11pp), 2013 April 10

LÓPEZ-CÁMARA ET AL.

Figure 14. Radial density profile (g cm⁻³, upper panel) and the radial Lorentz factor (bottom panel) for both the 2D model (red line) and the 3D model (black line) for the time frame when the jet has broken out of the star. For both models the path is a polar axis (0°) radial path from the (+X, +Z) quadrant. (A color version of this figure is available in the online iournal.)

In Figure 13, we show the Lorentz factor structure for the 2D case (once the jet has just broken out of the stellar surface).

(Lopez-Camara+ 13) ~steady recollimation shocks at $\sim 10^9$ cm

Evidence for recollimation shocks at ~ $10^2 - 10^3 r_{sch}$. May be observed in data

Conditions for thermalization: $R_d \sim 10^{10}$ -10¹¹ cm, $\Gamma < \sim 20$ (Vurm, Lyubarski, Piran 13)

Figure 1. Constraints on r and Γ from the requirement of efficient bremstrahlung thermalization (solid lines) and from the observed peak energies (dashed lines) of flow luminosities $L = 10^{51}$ (blue), 10^{52} (red), and 10^{53} erg s⁻¹ (green) and $\varepsilon_{\rm rad} = \varepsilon_{\rm BB} = 1$. The allowed region is below the solid and above the dashed lines. The bremsstrahlung photosphere is shown by dot-dashed lines.

Pe'er et. al., 2015

See talk by Ryde

Obs. consequence: phot. emission from a structured jet

structured jet is a natural outcome

(Zhang, Woosley & MacFadyen, 03)

Photospheric emission: jet velocity profile (cocoon, etc...)

Extended emission from high angles

Flat spectra for different viewing angles

GRB/GW170817 (year): evidence for a structured jet viewed off-axis

Structured jet, viewed 22⁰ from jet axis

Rad. mechanism: synchrotron (\rightarrow energetic electrons + B-field << Pointing dominated)

The idea of structured jet is widely accepted (extra 1-2 deg. of freedom) - Flow is not pointing flux

Photon up-scattering by Fermi-like mechanism

Repeated scattering between regions of different Γ , causes photon energy increase.

Lundman, AP & Ryde (2013); Ito et. al. (2013);

 $1 \rightarrow 2 \rightarrow 1$ $\left\langle \frac{v_{out}}{v_{in}} \right\rangle \approx \frac{1}{4} \left(1 + \left(\frac{\Gamma_2}{\Gamma_1} \right)^2 \right) \left(1 + \left(\frac{\Gamma_1}{\Gamma_2} \right)^2 \right) > 1$

Full calc. >>

Photon energy gain: basic idea

30

Multiple scattering: obtaining a power law

Results: Monte-Carlo simulation

 N_{γ} =10^{6.5}, Γ_0 =100, θ_i =0.01 ϵ_0 = 10⁻⁶ m_ec²

Confirm analytic estimate: High energy power law; spectral slope β =-2.54

Semi-analytic expression of the spectral slope

Photospheric emission: polarization?

1. Thomson scattering produces linearly polarized light.

2. Necessary condition: anisotropic photon field. fulfilled near the photosphere (beaming)

Spherical outflow: Emission from θ^{-1}/Γ is fully (100%) polarized

Beloborodov (11)

Photospheric emission: polarization?

3. Necessary condition for unresolved sources: breaking of the rotational symmetry:

Photospheric emission: polarization!

Off- axis observer:

- <~40% linear polarization
- ♦ Significant flux
- Natural prediction:
 - $\pi/2$ shift in polarization angle (observed in GRB100826A)

Lundman, AP & Ryde (2014)

Broad spectra:

- ♦ Does not look like Plank !!
- Low energies: extended emission from shear layer-> flat spectra
- High energies: repeated scattering between core and shear layers ->
 Power law

Basic model for radio emission from jets in XRB's: synchrotron

0 Shock JCMT UKIRT HST Nozzle Ryle+VLA -2 EUVE Optically thick Post-shock Jet "Disk" BB log₁₀ I_ν(Jy) -4 RXTE Optically thin Post-shock Jet -6 Pre-shock Jet Inverse Compton + Nozzle -8 $\xi = 100$ $\xi = 10$ Thermal/Outer Accretion Dick -10 10 15 5 $\log_{10} \nu$ (GHz)

Markoff, Falcke & Fender, 2001

Blandford & Konigl (1979)

1. Basic assumptions: $n=c\gamma^{-p}\sim r^{-2}$ B(r) ~ r^{-1}

2. Basic Synchrotron Theory $j_{v} \sim nB^{(p+1)/2} v^{-(p-1)/2}$ $\alpha_{v} \sim nB^{(p+2)/2} v^{-(p+4)/2}$ $\tau_{v} \sim r\alpha_{v} \sim rr^{-2} r^{-(p+2)/2} v^{-(p+4)/2}$

 $v_{break} = v |\tau_v = 1 \sim r^{-1}$

 $dF_{v} \sim r^{2} (j_{v} / \tau_{v}) dx$ ~ r B^{-1/2} v^{5/2} dx

$$dF_{v}|v_{break} \sim r^{0} \sim v_{break}^{0}$$

Flat radio spectrum

Alternative: no need for SSA. Spectrum from a Maxwellian: only sync.

Summary

- 1) Relativistic jets are (i) ubiquitous; (ii) fragmented; (iii) filled with radiators; (iv) structured
- 2) Two leading models for jet formation:
 (i) BZ→ Pointing-dominated → need to entrain the jet with material
 (ii) Collapsar → neutrino/ photon dominated (better align with fits).
 Numerical studies lack crucial physics
- **3)** Energy dissipation: internal shocks (efficiency), magnetic reconnection.
- 4) Photosphere: (i) solves efficiency issue; (ii) photon energy gain by repeated scattering; (iii) polarization Implication on particle acceleration
- 5) Flat radio spectrum in AGNs/XRBs can be obtained from a Maxwellian

1. Flares during the x-ray plateau

Swift launch: Nov. 2004

Ubiquitous: X-ray plateau seen in 60% of GRBs (Srinivasaragavan + 2020)

X-ray Plateau

Swift launch: Nov. 2004

acecraft

Ubiquitous: X-ray plateau seen in 60% of GRBs (Srinivasaragavan + 2020)

Plethora of ideas...

- **Continuous energy injection** that slows down the acceleration Zhang et. al., 2006; Nousek et al., 2006; Panaitescu et. al., 2006 ; Granot et. al., 2006; Fan & Piran, 2006 ; Ghisellini+2007...
- 2 component jet Ramirez-Ruiz + 2002, Granot+ 2006, Racusin et. al., 2008, ...
- Forward shock emission in Inhomogeneous media Toma et. al. 2006
- Scattering by dust / modification of ambient density by a gamma-ray trigger loka et. al., 2006, Shao & Dai, 2007..
- Dominant reverse shock emission Uhm & Beloborodov, 2007, Gennet + 2007, Hascoet+2014...
- Evolving microphysical parameters (ϵ_{e} , ϵ_{B}) loka et. al., 2006, Panaitescu, 2006
- Viewing angle effect: jets viewed off-axis Eichler & Granot 2006, Toma + 2006, Eichler + 2008, 2014, Oganesyan et. al., 2019, Beniamini et. al., 2020
- Forward shock before deceleration Shen & Matzner, 2012

Plethora of ideas...

- **Continuous energy injection** that slows down the acceleration Zhang et. al., 2006; Nousek et al., 2006; Panaitescu et. al., 2006 ; Granot et. al., 2006; Fan & Piran, 2006 ; Ghisellini+2007...
- 2 component jet Ramirez-Ruiz + 2002, Granot+ 2006, Racusin et. al., 2008, ...
- Forward shock emission in Inhomogeneous media Toma et. al. 2006
- Scattering by dust / modification of ambient density by a gamma-ray trigger loka et. al., 2006, Shao & Dai, 2007..
- Dominant reverse shock emission Uhm & Beloborodov, 2007, Gennet + 2007, Hascoet+2014...
- Evolving microphysical parameters (ϵ_{e} , ϵ_{B}) loka et. al., 2006, Panaitescu, 2006
- Viewing angle effect: jets viewed off-axis Eichler & Granot 2006, Toma + 2006, Eichler + 2008, 2014, Oganesyan et. al., 2019, Beniamini et. al., 2020
- Forward shock before deceleration Shen & Matzner, 2012

Requires: (i) explosion into a "wind"; (ii) $\Gamma_i < 100$; (iii) a-chromatic breaks

Does Γ have to be > 100?

Measure Γ : 1. Opacity; 2. strong thermal; 3. onset of afterglow (reverse shock)

THE ASTROPHYSICAL JOURNAL, 878:52 (61pp), 2019 June 10 © 2019. The American Astronomical Society. All rights reserved.

A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog

M. Ajello¹, M. Arimoto², M. Axelsson^{3,4}, L. Baldini⁵, G. Barbiellini^{6,7}, D. Bastieri^{8,9}, R. Bellazzini¹⁰, P. N. Bhat¹¹,

(1) 2nd Fermi-LAT catalogue: (Ajello+ 2019):

Only 3/186 LAT bursts show any evidence for a "Plateau" !

→ Opacity argument ($\gamma\gamma$ → e^{\pm} : (GeV) LAT photons necessitates Γ >~100) is not valid !

(2) +- All Plateau bursts, are below the NDP line – -Do NOT show evidence for a leading thermal component

"Plateau" bursts seem to anti-correlate with requirement for high Γ

Basics of synchrotron (wind)

 $v_{\rm m}^{\rm ob.} \sim {\sf B} \gamma_{\rm el}^2 \Gamma$ $v_{\rm c}^{\rm ob.} \sim \Gamma^3/({\sf B}^3 {\sf r}^2)$ ${\sf F}_{v,{\rm peak}} \sim {\sf N}_{\rm e} {\sf B} \Gamma$

Coasting: $v_m^{ob.} \sim t^{-1}$; $v_c^{ob.} \sim t$

* Shock generates B field
 & accelerates particles:
 γ_{el}~ Γ ε_e; B ~ε_B u

Self-similar decay: $v_m^{ob.} \sim t^{-3/2}$; $v_c^{ob.} \sim t^{1/2}$

Self-similar

Coasting

Γ(R)

Basics of synchrotron (wind): theory vs. data

Bridging an observational gap

 $<\Gamma_i>=51$ bridges an observational gap btw blazars and LAT/ no plateau GRBs And- can potentially explain polarization angle change

Independent way to discriminate between models? 1.a. Flares during the early afterglow phase

Sample consists of 89/100 GRBs (11 GRBs are excluded due to special features):

- 1) <u>~69% of all GRBs analyzed have flares.</u>
- 2) ~64% of all GRBs analyzed have plateau
- 3) ~68% of the GRBs with flares have a plateau.
- 4) <u>~73% of plateau GRBs have flares.</u>

Conclusion- (1): The existence of flares is independent of the existence of a plateau.

Dereli-Begue, AP, Begue, Ryde, 2024, submitted

Results: flare properties (1)

No notable differences between flare properties

Dereli-Begue, AP, Begue, Ryde, 2024, submitted

Flare properties - implications

Flare peak time

Main results: (1) t_{peak} is, on the average, same for both sample (2) $<\Delta t/t_{peak} > ~1$, irrespective of the environment.

Relative time-scale variability

Implications for Plateau origin:

Late time central engine activity: Flares expected to occur later; $\Delta t/t_{peak}$ have different distributions \rightarrow contradicts results (1) and (2) X Viewing angle effect: Flares in plateau GRBs expected at later times \rightarrow contradicts result (1) X – similar for density effects x Low Lorentz factor during the coasting phase: The dissipation that produces the flares occurs at smaller radii \rightarrow no contradiction \checkmark