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Gravitational wave mergers of compact object binaries by LVK

e 83 merging binary black holes detected by Masses in the Stellar Graveyard
L|GO-V|rgO_KAG RA (LVK) since 2015 200 LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars

e Observed merger rate: 17.9 — 44 Gpc™ yr~!
(Abbott et al. 2021)

e 2 merging binary neutron stars and 6 black
hole-neutron stars

Key Question:

e What is the astrophysical origin of these merging
black holes?

Possible Answers:

e |solated binary evolution
Image Credit: Visualization: LIGO-Virgo-KAGRA / Aaron Geller / Northwestern Geller

e Dynamical formation in dense stellar environments

e Other scenarios: Mergers in field triples, black holes trapped in accretion disks of active galactic nuclei

* Non-stellar origin black holes: Primordial black holes
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Globular Clusters

e Spherical collection of stars that orbits a galactic core as a satellite.
e Comprise 100,000 to millions of stars.

e Globular clusters in the Milky Way are estimated to be at least 10 billion years old

e Most of these stars are old Population Il (metal-poor) stars.

e Stars are clumped closely together, especially near the centre of the cluster —

high central densities > 10* — 10° M, pc™ NGC 104 aka 47 Tucanae

Mass ~ 7 X 10°M

e [nterplay between dynamical encounters and stellar/binary evolution in e~ 0.6 e Ty~ 4 pe

. . . . p. ~ 10° M, pc™3
globular clusters makes them efficient factories for producing exotic c ©

Age ~ 12 — 13 Gyr
[Fe/H] ~ — 0.78

astrophysical objects — blue straggler stars, gravitational wave sources, compact

object binaries, and high-energy transients
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Stellar density in the densest star clusters

D =4.34 lyrs

or
1.33 pcC

Credit: Nora Luetzgendorf
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Observing the sky inside a globular cluster

NGC 104 aka 47 Tucanae

Mass ~ 7 X 10°M
rCNO.6 pC I”th4pC

3

p. ~ 10° M, pc™

Age ~ 12 — 13 Gyr

[Fe/H] ~ — 0.78

What The Night Sky Would Look Like From Inside A Globular Cluster
From the core of 47 Tuc Credit: William Harris and Jeremy Webb (2014)
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Specific frequencies of globular clusters

Credit: N. Luetzgendorf
hMillaiae., = Andromeda '

¢ + -
All Types 6 ob @ , b
4 — ._ L& o
‘= & ::'?;:,
ST A4
+ 1 84
&} (DR "":":Wi’\:z
3
(R © O
a0 ¢ y: 35 %r
o 2 TRy T . .
e

~150 GCs ~460 GCs ~15000 GCs | , 2K

e Specific frequency of globular clusters correlates with dynamical

mass of the host galaxy s 10 1z
log Mdyn/M@
o Currently ~0.1 —1% of galaxy stellar mass is in globular clusters

(Harris et al. 2014)

Harris, Harris, & Alessi (2013)
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Key Questions

e What happens to black holes in globular clusters?

e Do black holes receive large kicks when they are formed in core-

collapse supernovae?

e \What fraction of black holes can be retained in stellar clusters?

e What are the dynamical processes that lead to the

formation of binary black holes?

e What is the contribution of dynamically formed binary

black holes to the merger rate?

e Could intermediate-mass black holes be created in dense
stellar clusters? Can these grow by merging with other

black holes?
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The MOCCA code and large database of simulated star cluster models

e MOnte Carlo Cluster simulAtor: code to evolve realistic star clusters (Giersz et al. 2013;
Hypki & Giersz 2013)

e Based on Hénon (1971, 1973) MC method and improvements to it by Stodolkiewicz
(1982, 1985; 1986) and Giersz (1998, 2001, 2006) = Combines the particle based
approach of the direct N-body method with the statistical treatment for 2-body relaxation

o Stellar/binary evolution based on SSE/BSE code (Hurley et al. 2000; 2002) with several

upgrades (Kamlah et al. 2022) https://moccacode.net/

e Direct integration for binary-single and binary-binary interactions: Fewbody code (Fregeau
et al. 2004)

Binary/ Stellar
Strong Evolution

* Good agreement with direct N-body simulations: Dynamical (SSE/BSE)
(Giersz et al. 2013; Wang et al. 2016; Madrid et al. 2017; Kamlah et al. 2022)

"-uuh()dv

e Can simulate the evolution of a realistic cluster on the timescale of days to weeks

e Advantage: Useful for carrying out large survey of simulated models that probe the

initial parameter space: initial masses, size, densities, initial binary fraction,
metallicity, BH kicks = MOCCA-Survey Database |, Il, lll (Belloni et al. 2016; Askar et al. ‘
2017; Hypki et al. 2022; 2024; Maliszewski et al. 2022; Giersz et al. 2024) MOCCA
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Black hole retention in star clusters

e Stellar-mass black holes ( ~ 10 to 50 M) form when massive stars end
their lives

e Black hole progenitors evolve within few to 30 Myr

: : Mzams R 18 —20Mg ~ 2 black hole for
e Retention: natal kick of the black hole needs to be less than the escape every 1000 stars

speed of the host cluster

: . : : : . Black Hole (BH) | BH Natal Kicks |
- Natal kick depends on the final evolution of the progenitor star: its mass and metallicity — } Uncertain

Fryer et al. (2012), Janka (2013) Belczynski et al. (2002; 2008; 2016), Spera & Mapelli (2017), Kamlah et Cluster (5C) \ | Escape Velocity of SC |
al. (2022)
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10000 | " NS Kicks for BHs
N = 700,000, Initial binary fraction (IBF) = 10% & Kicks sca|edlcb; fé.’.ﬁbacﬁ
Z=0.052Z0 rn =4.8 pc, re =120 pc, Vesc= 33 km/s § 1000 ‘ ‘
0.08 Mo < Mzaws < 100 Mo (Kroupa 2001 IMF) 2 S —
Number of black hole progenitors ~ 1900 = .
L
m 100 3
2 cases (N = 700,000): o
 Neutron star kicks (Hobbs et al. 2005) = ‘
- 10 +
for black holes =
« Black hole kicks scaled by fallback o _
(Belczynski et al. 2002) and 1 1 ' 1 1

5 10 15 20 25 30
Time [Myr]

momentum conservation
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Number of black hole progenitors ~ 1900 = _
& 100 |
2 cases (N = 700,000): % Retention fraction of black holes in globular
 Neutron star kicks (Hobbs et al. 2005) ‘é ol clusters can be as high as 55% or lower than 1%
for black holes B depending on how you compute natal kicks!
» Black hole kicks scaled by fallback o _
(Belczynski et al. 2002) and 1 1 ' l l
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momentum conservation
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Black hole dynamics in star clusters

e Black holes segregate to the center of the cluster — interact

- Mass Segregation

with each other and surrounding stars
~ _ ®
I >,
B | o™ e
* 3 body binary formation — (> |
e Chaotic binary-single and binary-binary interactions involving black holes s
» Formation of binary black holes through exchange encounters (Portegies Zwart & Before After
McMillan 2002) @ =- o o
Q ’BH
» Mergers may also occur during these interactions (Samsing 2018, Samsing, Askar, " m) - N —
Giersz 2018, Rodriguez et al. 2018 a,b) @BH Fﬁgsngx;ogethe

Binary Hardening in Fly-by Encounters

e Hardening of binary black holes through interactions — binary
becomes ‘useful’ = can merge due to gravitational wave /!

GWs * GWs

radiation within a Hubble time «~ .@ —
/’ BH - o

BH

4
Apin 1 112 R
Ty = 10107 ( ) ( (1 -¢?) (Peters 1964) W e

3 3R® my -+ mz) myni, binary black hole orbit.

Before After
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Dynamical processes leading to binary black hole formation

* Dynamical interactions also eject tight binary black holes out of
the cluster due to dynamical recoil (scattering kick)

e Can merge due to gravitational wave emission outside the cluster

!

o Black hole population in clusters depletes with time — depletion time

depends on cluster initial properties

. : 0\ 11 111 IV
e Black holes heat surrounding stars (Mackey et al. 2007;2008, Breen & Heggie : vear depletec
BH subsystem
201 3) “ : Restored balanced
% - / \ evolution
* Initially dense clusters — more interactions — faster depletion of black holes & | subsystem \ /
o) Balanced
o Less dense clusters — fewer interactions — slower depletion of black holes N evolution 4
Core bounce gecond e
¢ |nitially dense clusters that are dynamically older produce more in BH subsystem
‘useful’ binary black holes Time

Credit: Breen & Heggie (2013)
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Producing binary black holes in globular clusters

e Simulated 2000 GC models with different initial parameters as 0 | | T Escaoing BBHS (rotal: 17,121 —

part of the MOCCA-Survey Database | (Askar et al. 2017) :ZZ i FaH Inice G Modls (Total 34381 —

e Black hole natal kicks computed according to the mass fallback % 6000 |- -

prescription given by Belczynski et al. (2002) — 1007 GC models § 5000 |- -

o Systematically search for merging binary black holes that escape of g L _

merge inside the cluster 3 Zzzz : :

e 17,121 'useful' BBHs escaped the cluster 1000 (- -
e 3,435 BBHs merged inside the cluster within a Hubble time o 2w wm  eo0 a0 1oi>oo | 121000 ljooo

Merger Time [Myrs]

e Most mergers inside the cluster occur within the first 500 Myr
Models from MOCCA Survey Database |

of cluster evolution (Askar et al. 2017)
e Dynamically formed escapers contribute to binary black hole
mergers at later times 0/—>\

* m.
¢ N
e Mostly formed in exchange encounters during 3 or 4-body

encounters
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Dynamical formation of a binary black hole

Time . 30.1 Mo
0 Myrs MS Star
® 25.1 Mo BH
N
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3
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interaction
'-‘» »» leading to
disruption of
one binary

Slngle - Binary

e 2single black holes form in the cluster
from the evolution of massive stars

!

eBoth end up in 2 different binaries following numerous

!

eForm a binary after a binary-binary exchange interaction and

!

o Will merge outside the cluster after 208 Myr since the

dynamical interactions

are ejected from the cluster

beginning of cluster evolution

exchange
Interaction tmerg = lese T Igw Peters (1964)
An example of a dynamically formed BBH from Askar et al. (2017) fers = = 145+ 63
Based on interaction diagrams first presented in
Rodriguez et al. (2016)
fmere = 208 Myr
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Merger rates for binary black holes originating from globular clusters

¢ Estimated local merger rate density as done for isolated field
BHs (Bulik, Belczynski & Rudak 2004). S R R S R S T S

‘:C_D . GW151012 —_— 7 <0.02F
e GC star formation rate as a function of redshift (Katz & Ricotti 2013) 5 Gm:m*’* GW1T0814 — Z=0.02¢
- Peak in GC Formation at about redshift (z) of 3 T - S—— om—— )
?o Gwlliclsim - 25 -

 |ocal merger rate density of BBHs originating from GCs: 3 e —— M = <( ;2))1,5
) |O - E\.Nlroms m; -+ mj -

5.5 =25 Gpc™ yr~! (Askar et al. 2017) f; " |
e Consistent with independently calculated rates by Rodriguez et al. i 'S - -
(2016), Park et al. (2017), Hong et al. (2018; 2020), Mapelli et al. 2022 -

and also other recent studies 5 I 0

° Rodriguez & Loeb (201 8) — 15 GpC_3 yr‘l (l) | 10 20 30 | 4Io | 50 60 | 7Io | glo

Chirp Mass [Mg]

Differential rate density per unit chirp mass
Updated Fig. 4 from Askar et al. (2017)
Credit: Magdalena Szkudlarek
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Merger rates for binary black holes originating from globular clusters

¢ Estimated local merger rate density as done for isolated field
BHs (Bulik, Belczynski & Rudak 2004). Chirp Mass Distribution

o GC star formation rate as a function of redshift (Katz & Ricotti 2013) i :
- Peak in GC Formation at about redshift (z) of 3 )
g0.06- 3/5
o |ocal merger rate density of BBHs originating from GCs: E = i) :
® (m1+m2)1/
5.5 =25 Gpc™ yr~! (Askar et al. 2017) % oo
e Consistent with independently calculated rates by Rodriguez et al. :
(2016), Park et al. (2017), Hong et al. (2018; 2020), Mapelli et al. 2022
and also other recent studies

e Rodriguez & Loeb (2018) = 15 Gpc™ yr™! Chirp Mass (Vo)

New MOCCA Models from 2024 (~320 star cluster models)
* Improved treatment for progenitor winds (Vink et al. 2001;
2008)
* BH masses depend on ‘Rapid’ supernova prescription from
Fryer et al. 2012

Formation of Gravitational Wave Sources Originating from Globular Clusters - Abbas Askar ' PAiP-2025, Warsaw, Poland 21st February, 2025



Merger rates for binary black holes from globular clusters

Estimated local merger rate density as done for isolated field
BHs (Bulik, Belczynski & Rudak 2004).

GC star formation rate as a function of redshift (Katz & Ricotti 2013) - -
Peak in GC Formation at about redshift (z) of 3

Local merger rate density of BBHs originating from GCs:
5.5 =25 Gpc™ yr~! (Askar et al. 2017)

Consistent with independently calculated rates by Rodriguez et al.
(2016), Park et al. (2017), Hong et al. (2018; 2020), Mapelli et al. 2022...

Rodriguez & Loeb (2018) = 15 Gpc™ yr™!

Comoving Merger Rate [Gpc™3 yr1]

Open question: How much star formation took place in
globular clusters?

Currently ~ 0.1 —1% of galaxy stellar mass is in globular clusters
(Harris et al. 2014)

May have been > 10% atz > 3 (Muratov & Gnedin 2010)

100 -

80 -

60 -

40 -

20 -

-, = 1pc, Total
r, = 2pc, Total
= Combined

40
30 A
20 -

10 -

0

4 6
Redshift

Rodriguez & Loeb (2018)

Redshift

0.3 0.6
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Merger rates for binary black holes from globular clusters

e Estimated local merger rate density as done for isolated field
BHs (Bulik, Belczynski & Rudak 2004).

- GC star formation rate as a function of redshift (Katz & Ricotti 2013) - -

So which dominates, field or cluster?

(Common x Rare = Rare x Common?)

Peak in GC Formation at about redshift (z) of 3 Askar-Davies Inequality
e Local merger rate density of BBHs originating from GCs: T Globular cluster
5.5 =25 Gpc™ yr~! (Askar et al. 2017) § 100 | ) P
» Consistent with independently calculated rates by Rodriguez et al. :5" | \‘\
(2016), Park et al. (2017), Hong et al. (2018; 2020), Mapelli et al. 2022... f OF |
* Rodriguez & Loeb (2018) = 15 Gpc™ yr! E L
® (Open question: How much star formation took place in ;
globular clusters? oo oo ,;,et;..i;n;,mc;'[m o
* Currently ~0.1 —1% of galaxy stellar mass is in globular clusters Efficiency: Number of merging BBH
(Harris et al. 2014) binaries per

(Figure Credit: Tomasz Bulik)

* May have been > 10% atz > 3 (Muratov & Gnedin 2010) Field data from Belczynski et al. 2016
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Merger rates for binary black holes from globular clusters

GWTC-3, Abbott et al. (2021e): PDB (ind) fe= Gravitational waves
GWTC-3, Abbott et al. (2021¢): MS frtpemd
GWTC-3, Abbott et al. (2021c): BGP fg=f
GWTC-3, Abbott et al. (2021e): redshift dependent I—.—I

So which dominates, field or cluster?

O'Shanghnessy et al. (2010) i Isolated binary evolution
Mennekens and Vanbeveren (2014) k..—.-*

de Mink and Belezynski (2015) { OCZo Soun *

Dominik et al. (2015) § *—00-0 Lam])m:tl‘ o (CO m mo n X Rare 2 Rare X CO m mO n ?)

Lipunov et al. (2017) @

Mapelli et al. (2017) fprmmmie e
Ablimit and Maeda (2018) *—.—--*

B e —— Askar-Davies Inequality

Klencki et al. (2018) H

Kruckow et al. (2018) *—. o= .—..—+
Mapelli and Giacobbo (2018) H 1000 : ' ! E R ' ' o o ) ) o ':

Artale et al. (2019) ® i Globular cluster
Baibhav et ali (2019) H

[ Field
Chruglinska et al. (2019) *—.—0—0-0-“—.—* i
Eldridgeiet al. (2019) H -
Neijssel et al. (2019) *‘—0-.-.-4
Spera et al. (2019) @
Belczynski et al. (2020). e @i 0000 0—000—0¢)
Giacobbo and Mapelli (2020) {uveenmdh
Santaliquido et al. (2020) +—0—*
Tang et al. (2020) _4
Zavin et al. (2020) {-esseemmm—o-soneo—ood
Bavera et al. (2021) M
Ghodla et al. (2021) * C C o .—*
Mapelli et al. (2021) *—.—4
Olejak et al. (2021) fprmmmtpi
Riley et al. (2021) H
Roman-Garza et al. (2021) H
Santoliquido et al. (2021) b—.ﬁ
Shao and Li (2021) H
Briel:et al. (2022b) @
Brockgaarden et al. (2021, 2022) *—_
Dorozsmai and Toonen (2022) M
Olejak et al. (2022) H

100 — -
- T — 4
- / 4
- 4
- —

BBH formation efficiency [/M Msun]
H
- o
b | 1
| |

01 i 1 lllllll i i lllllll 1 1 L4 1 81 1131

Bae et al. (2014) .
Rodriguez et al. (2015) * { { { 0 . 0 O o 1 0 ) O 0 1 0 ‘ 0 1 0 ‘ 1

Antonini and Rasio (2016)

Rodriguez et al. (2016a) I { MEta”lClty
Askar et al. (2017)
tFujifeilal. (}2017) } { * o o . .
N e L Efficiency: Number of merging BBH
Fragione and Kog¢sis (2018)
Hong et il. (2018) § o } *

binaries per
Rodriguez and Loeb (2018) { *
Choksi et al. (2019)

i G 0§ , (Figure Credit: Tomasz Bulik)

Kremer et al. (2020) § {
Mg . (2021 § * Credit: Mandel & Broekgaarden (2021)
e e ) Field data from Belczynskl et al. 2016

Loval BE-BH merger rate density [Gpe—SyrT " Open Data: DOI 10.5281/zenodo.5072400
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Binary black hole production and globular cluster properties
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Eccentric binary black holes mergers in clusters

e Non-negligible probability of experiencing a very close passage
during a resonant encounter

BBH Eccentricity Distribution at 10Hz

e Significant orbital energy and angular momentum are carried

[ GW inspiral mergers
[ Post-interaction GW mergers

away from the system by gravitational wave radiation — can

cumulative histogram

1.000 FJ,_.—

0.995 |

result in rapid, highly-eccentric black hole mergers (e > 0.1)

0.990

histogram counts

0.985

0.980 L L L L
0.0 0.2 04 0.6 0.8 1.0

e [10 Hz]

e Rate of such capture mergers: 0.5 —2 Gpc™ yr~! _
see Samsing (2018), Samsing, Askar, Giersz (2018), Rodriguez et al. (2018 g . #_J
a,b) log e [10 Hz]

Samsing & Ramirez-Ruiz Samsing (2018)
(2017)

-10 -5 0 5 10

e Very rarely single black holes may also capture each other and
merge (Samsing et al. 2020)

e Hierarchical three-body mergers (Samsing & llan 2018, Veske et .
al. 2020) e

(c) 3body merger

® For eccentric mergers during binary-binary interactions, see
Zevin et al. (2018)

e See also contribution from triple systems (Antonini, Toonen & Credit: Samsing et al. (2020)
Hamers 2017)
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GW190521 and LVK observations of black holes in the upper-mass gap

e Pair and pulsational pair instability supernovae prevent formation of black holes

with masses in the range: ~ 50*{) — 120 M, - upper mass gap of black holes o
Pressure\_/

elailel[<Welells
produior:
+

e VK Observations of massive stellar-mass black holes:

Primary Mass| Secondary Mass| Effective Spin Luminosity

LVK Merger Event :
Xoff Distance (Gpc)

Image Credit: Lucy Reading-

GW190521 030229 9531‘%23 691‘%1 0031'833 6. lfg? 0641_852 lkkanda/Quanta Magazine
GW190403_051519  g8g8*282 22.11238 +0.15 +5.99 +0.64
~32.9 -9.0 0.70757 8.0073 34 114757
GW190426 190642 +41.6 4+26.2 +0.43 +3.35 +0.41
_ 106.97325 76.6735 0.197 779 4.35777 0.707573,
GW200220_061928 87153 61126 0.0610-40 6.1477 1.1410-64 Data from GWTC-2.1 and 3 (Abbot
-25 —0.38 ’ —0.49 et al. 2020; 2021)

https://www.gw-openscience.org/
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Repeated or hierarchal mergers of black holes in dense star clusters

e Two sBHs (1G) merge due to gravitational wave (GW)
emission and form a more massive BH (2G)

® |n adense star cluster, this merged BH (2G) can pair up and . o
merge with another BH (1G or 2G) \/

® Most straightforward way for growing BHs and one of the

lg+1g event lg+2g event 2g+2¢g event

proposed formation channels for GW events like

GW190521

Rodriguez et al. (2019; 2020), Arca Sedda et al. (2020; 2021), Fragione et al.
(2020) Kremer et al. (2020), Samsing & Hotokezaka (2020), di Carlo et al. (2020),
Dall’Amico et al. (2021), Mapelli et al. (2021), Banerjee (2022)

Gerosa & Berti (2017)

® Repeated BH could lead to the runaway growth of an IMBH
~ 10— 10* M
Miller & Hamilton (2002); Mouri & Taniguchi (2002); Portegies Zwart &

McMillan (2002) o ‘ > .

GW190521

Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC)
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Repeated or hierarchal mergers of black holes in dense star clusters

Two sBHs (1G) merge due to gravitational wave (GW)
emission and form a more massive BH (2G)

® |n adense star cluster, this merged BH (2G) can pair up and
merge with another BH (1G or 2G)

® Most straightforward way for growing BHs

o Problem: Can be difficult to retain a merged BH in a dense
environment due to GW recoil kicks

(e.g., Merritt et al. 2004; Holley-Bockelmann et al. 2008) /////// v
* |f GW recoil kick magnitude is larger than the escape /\>
speed of the cluster then merged BH will escape \/ Wiseman (1992)
* Magnitude of GW depends on mass ratio of merging BH mlf\v; w
and the magnitude and orientation of their spins 4//

Formation of Gravitational Wave Sources Originating from Globular Clusters - Abbas Askar ' PAiP-2025, Warsaw, Poland 21st February, 2025



Repeated or hierarchal mergers of black holes in dense star clusters

e Magnitude of GW recoil kick depends on mass ratio of i
merging BHs and the magnitude and orientation of their spins

2500

| | | | | I A \
Spin distribution with peak values at 0.7 : Uspin |
Spin of 0.1 for M1 and M2'

2000

[ P2
1500 | 3 A
L

1000 |-

GW Recoil Kick [km/s]
Q

500 |- Morawski et al. (2018)

Assuming isotropic spin directions
GW recoil kicks calculated using van Meter
0 ] ] ] ] ] ] ] ] i (2010)

0 04 02 03 04 05 06 07 08 09 1
Mass Ratio (q)

If sSBH birth spins are low then 2G BHs can potentially be retained in environments like globular clusters

e 2G BHs are likely to have to have large spins values (close to 0.7) = 2G+1G and 2G+2G merger products will
receive large recoil kicks = harder to retain 3G and 4G BHs

Better chances for retaining merged BHs in NSCs due to higher escape velocities (Gerosa & Berti 2019; Antonini et al.
2020; Fragione et al. 2022)
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Repeated or hierarchal mergers of black holes in dense star clusters

e Magnitude of GW recoil kick depends on mass ratio of sl
merging BHs and the magnitude and orientation of their spins

2500

| | | | | I A \
Spin distribution with peak values at 0.7 : Uspin |
Spin of 0.1 for M1 and M2'

2000

-

- A
- -
- .

-
o))
o
o

1000 |-

GW Recoil Kick [km/s]
Q

500 |- Morawski et al. (2018)

Assuming isotropic spin directions
GW recoil kicks calculated using van Meter
0 ] ] ] ] ] ] ] ] i (2010)

0 04 02 03 04 05 06 07 08 09 1
Mass Ratio (q)

If sSBH birth spins are low then 2G BHs can potentially be retained in environments like globular clusters

e 2G BHs are likely to have to have large spins values (close to 0.7) = 2G+1G and 2G+2G merger products will
receive large recoil kicks = harder to retain 3G and 4G BHs

Better chances for retaining merged B Birth spins of BHs are highly uncertain!

2020; Fragione et al. 2022)
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Upper-mass gap BH Mergers: Results from MOCCA simulations

e Mergers in the mass gap

N = 2.5 million stars (1.4 x 106 My) between 0.08 Mg £ Mzams £ 150 Mg 110
Z=0.05Zc (1 model with Z=0.01 Zo)
Rh=0.8 pc (po=4 x 106 M pc3)and 2 pc (po=2.5x 105Mp pc3)

Massive BBHs Observed by LVK
MOCCA - Dynamical BBHs Mergers Inside the GC (#32)
100 FmoccAa - Exchanged BBH Mergers that Escape the GC (#60)

Initial binary fraction 5% and 25% 90
Updated treatment for stellar winds, natal kicks and remnant masses - V150426
(Kamlah et al. 2022) 3 Y
Birth Spins of Black Holes = 0.1 (Fuller & Ma 2019) % 70 ° ®
GW Recoil Kicks Included % GW200220 CW190521

(O 60 L

=

T
BHs in the mass gap are mostly 1G+2G Mergers @ 5o

Few 2G+2G mergers

40

Maximum black hole mass from stellar evolution depends on
metallicity and prescriptions for progenitor evolution = up to 45 Mo

30

(Belczynski et al. 2016 ; Banerjee et al. 2020) 20

50 60 70 80 90 100 110
BH Mass 1 [M]
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Upper-mass gap BH Mergers: Results from MOCCA simulations

e Mergers in the mass gap

N = 2.5 million stars (1.4 x 106 M) between 0.08 Me < Mzams £ 150 Mo

Z=0.05Zc (1 model with Z=0.01 Zo) | ’ MOCCA - Exchanged BBHs Mergers Inside the GC (#32) ——
Rn=0.8 pPC (po=4 X 106 Mo pC3) and 2 PC (po = 2.5x105Mo pC3) MOCCA - Exchanged BBH Mergers that Escape the GC (#56)
Initial binary fraction 5% and 25%

Updated treatment for stellar winds, natal kicks and remnant masses
(Kamlah et al. 2022)

Birth Spins of Black Holes = 0.1 (Fuller & Ma 2019)
GW Recoil Kicks Included

BHs in the mass gap are mostly 1G+2G Mergers
Few 2G+2G mergers

Normalized Number of Merging BBHs

Maximum black hole mass from stellar evolution depends on
metallicity and prescriptions for progenitor evolution = up to 45 Mo

(Belczynski et al. 2016 ; Banerjee et al. 2020) 0 2 4 6 8 10 12 14
Delay Time [Gyr]
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Other pathways for growing black holes in dense star clusters

(A) Repeated or hierarchical mergers

of stellar-mass BHs Possible pathways for growing black hole mass in star clusters
(A) Repeated mergers of black holes (C) Tidal disruption/collision of stars with
ﬁ-} ® . | (i) Dynamical hardening ﬁ . :_IaCKtthItes T
. artially disrupted star accrete ac
(B) Fast runaway: Stellar collisions N—>0 -V 01 S 7 Wy hote g
" " l Massive stars ﬁfo \/\0%1 o> —> ‘
reSUltlng In IM BH formatlon evolve into (ii) Dynamical exchangev: G\?\Ij {? - @ > ‘
black holes ] Emission
Direct collisions between stars leading to black hole
p growth
d ' D) Bi luti / ti
(C) Slow runaway: Gradual growth of a L Merged black (D) Binary evolution mergers/accretion
Stel |a r-mass B H If merged black hole is retained, hole @—-} M —>» .

it may merge with other stellar-
y g Merger of massive stars in binary evolution leading to

mass BHs :
black hole formation
(B) Runaway growth of stars @ —3 m > @
. . ﬁ-’ﬁ-’ ﬁ-’ﬁ-’ﬁ — Merger of a star with a black hole or mass transfer in a
(D) B|na ry merge I'S |ead|ng tO IM BH ) ) binary system leading to the growth of a black hole
Runaway mergers leading to formation of a *
formation massive star (E) Gas accretion by black holes

Very massive star may evolve and directly
collapse to form an
intermdiate-mass black hole

e >0

Accretion of intercluster gas by stellar-mass black
holes may result in their growth

(E) Gas accretion by stellar-mass BHs
Askar, Baldassare & Mezcua (2024); https://arxiv.org/abs/2311.12118
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Conclusions

e [nitial black hole retention in stellar clusters depends on the natal kicks that they receive
® Dense clusters can efficiently form ‘useful’ binary black holes through dynamical interactions:

® Major channel: Exchange during binary-single encounters
® Binary black holes can be hardened and made ‘useful’ due to encounters

e Maximum local merger rate contribution from globular clusters is ~ 25 Gpc™ yr~! (consistent

with the observed merger rate from LVK)

e Binary black holes with component masses in the upper mass gap ( ~ 50+, to 120 M) can be

made in stellar clusters through:
Hierarchical mergers of black holes — need low birth spins to avoid ejection of 2G black holes due

to gravitational recoil kicks or 2G black holes can only be retained in the densest nuclear stellar

clusters

e GW190521 and similar detections are consistent with dynamical formation!
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Binary neutron star mergers from globular clusters

® Results from 27 GC models simulated with MOCCA the code (Belczynski et al. 2018)
» Reduced neutron star natal kicks: 0 km/s and 100 km/s

» 21 ‘useful’ neutron stars escape the cluster and 13 merge inside the cluster

» Local merge rate densities of 0.05 Gpc™ yr™!

I ! I I I l I ! I I l I_ 3 I | | | I LI I
1solated binary evolution _ f(M) = 0.001 x MO-55
1 P ,_’_I_, %
E " - > 2.5 ]
0 | 3 i
= 0.8 [ N © ¢
S o o |- _
2 globular clusters D
. 0.6 [ | § e
Z. o 15[ 1 N
5 z
u i , T
-
5 0.4 %3 1k _
3 5 |
S 5 ? 1
02 7 E 05| o -
=)
E. 1 1
O I | I 1 l | I | | 1 l | I O | | 1 | | 1 I 1 | | | | | | l
0 2 4 6 8 10 12 14 100000 1x10°

delay time [Gyr]
Initial Cluster Mass [Mg)]

Figures from Belczynski, Askar et al. 2018
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Binary neutron star mergers from globular clusters: black holes delay BNS formation

*Binary NS systems only begin to M - zzz _ S _
dynamically form in GCs once BHs g MW'T[T' | _
have been depleted and cluster is 2 w"““““w,m : f; .| i
evolving towards core collapse s M"‘fnm..mm | 600 |- :

S o -' 1 3
g | W H\‘”\\n“ | £ _

*BHs in the GC center ‘heat’ stars G o WMM " 00 \\ |

around them, preventing ol ol I ——

segregation of lower mass stars T meen .

g 14
g 12 -
g 10 |-

* B2127+11Cin M15 (NGC 7078), core radius: 0.42 pc half-light radius: 3.02 pc : |

* ]1807-2500 in NGC 6544: core radius 0.04 pc and 1.06 pc § .l
Ay .
2 |
§ 0 | | 4”1 l” VI | | ]

0 2 4 6 8 10 12 14

Time [Gyr]
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Binary neutron star mergers from globular clusters

Time Binary System: _—._ Binary System: 6.9
0 Myr (\ 11.0 and 4.95 Mo and 6.35 Mo MS
Y ~/..’ MS Stars ?’{«. Stars
G| C 1%
D, 4 -
{_- ‘».-’ V|
< CCSN of 11.0 Mo C: E/\
31 Myr % ) star > NS /’L Binary Binary
° ) " formation of NS ¢ . Interaction -> 6.9
| and binary ./i<' * Mo star becomes
disruption single
‘ NS 1.28 Mo
Single WD 1.32
Mo(63 Myr)
. MS-MS + NS
"~ Interaction. MS
9600 Myr merger with NS
\ & 1.68 Mo NS -
.C/ 0.71Mo MS Star
P 4 NS-MS + WD
10455 Myr o« H‘\ Interaction
Formation of NS-WD binary L' Merger between 0.12 MS and
V< WD during NS-WD + MS
— interaction
10620 Myr WD becomes an AGB of 1.44
Mo

Mns =1.68 Mo, Macs = 1.44 Mo
a=1252.0Rp, e =0.97

CE: NS-AGB binary

\ Mns = 1.91 Mo, Mwo = 1.32 Mo
Formation of NS-WD binary O a=29Rp,e=0.0
10717 Myr b «— Merger between ONe Mg

WD + CO-WD during
interaction - AICNS

Formation of NS-NS binary “é)‘“
o Mhs1 = 1.91 Mo, Mns2 = 1.26 Mo

Merger inside the cluster at 11.0 Gyr a=3.46Ro.e=0.75 From Belczynski, Askar, Arca Sedda et al. 2018
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Producing binary black holes in globular clusters

Normalized Number
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o
o
o

O
o
s
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0.00

Chirp Mass Distribution

Merger Time Distribution

Dynamical BBH formed due to exchanges (N=6038)
Primordial BBH(N=9561)
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New MOCCA Models from 2024
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Producing binary black holes in globular clusters

Chirp Mass Distribution Mass Ratio Distribution
Dynamical BBH formed due to exchanges (N=6038) | =1 Dynamical BBHs
Primordial BBH(N=9561) 0.30 Primordial BBHs
0.08 -
0.25 A

—
}- -
€ 0.06 - (m . )3/5 8 0.20-
5 1772 |2
2 M = .
- 1/5 5
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N o 0.15 -
© 0.04 1 Y
£ ©
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Consequence of using Sana et al. (2012) distribution for
initial binary parameters

New MOCCA Models from 2024
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Observations of stellar-mass black holes in globular clusters

Ob t. I :"_\".\
r n H Mé'2?VLA1
Type of Black Holes (BHSs) >Elvations Observations 2-VLAT |

Method

........
............

e 2 candidates in M22 (Strader et al. 2012)

1 candidate in M62 (Chomiuk et al. 2013)

« Ultracompact BH-WD binary in 47 Tuc (Bahramian et R T R G ST PR

Accreting BHs in Binary X-ray/Radio al. 2017) 2 BH candidates in M22

Systems Observations * BH-Red Straggler binary in M10 (Shishkovsky et al. (Strader et al. 2012)

2018)

* ULXs observed in a GC in the elliptical galaxy NGC
4472 (Maccarone et al. 2007)

Detached BHs in Binaries , . « 3 detected using MUSE in NGC 3201 (Giesers et al.
: : Radial Velocity
with a Luminous 2018; 2019)
. Measurement
Companion Msini =7.68 £0.50 M, 4.40 2.8 M, and 4.531 £0.21 M

NGC 3201
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