Searching for exceptional gravitational-wave sources in the LIGO-Virgo-KAGRA (LVK) data

- Model-independent searches
 - Core-collapse supernovae
 - LVK Workshop in Warsaw

Marek Szczepańczyk Department of Physics, University of Warsaw

> PAiP-2025 conference Warsaw, 20.02.2025

Return to Poland

- Ph.D., ~5 years: Embry-Riddle Aeronautical University (Arizona)
- Postdoc, ~5 years: University of Florida
- Assistant Professor, present: University of Warsaw (permanent position and a Polish Returns grant)

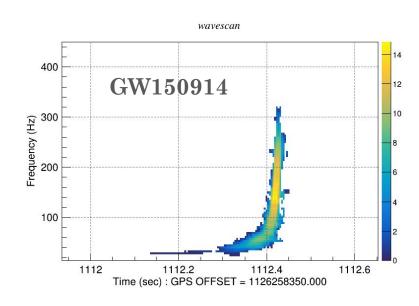
Homepage: https://www.fuw.edu.pl/~mszczepanczyk/

2023 edition WIELKA BRYTANIA × 2 FRANCJA × 1 · Poznań: UAM . Warszawa: Uniwersytet Warszawski Warszawa: Uniwersytet Kardynała Stefana Wyszyńskiego · Warszawa: SWPS Uniwersytet Warszawa: Uniwersytet Warszawsk Humanistycznospołeczny z siedziba Gliwice: Politechnika Śląska SZWAJCARIA × 2 NIEMCY × 2 RUMUNIA × 1 · Poznań: UAM Warszawa: Uniwersytet Warszawski, im. Ignacego Łukasiewicza Instytut Podstaw Informatyki Polskiej Akademii Nauk Kraków: Uniwersytet Jagielloński

Prof. Jerzy Lewandowski was my Inviting Scientist for Polish Returns grant

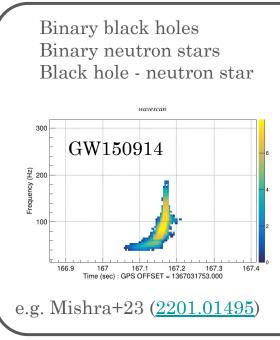
Exceptional GW sources

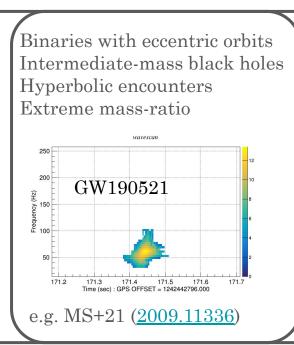
Exceptional astrophysical sources might play an important role in our endeavor of exploring the Universe.

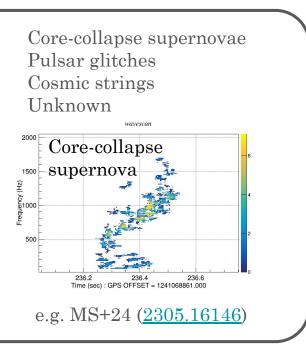

- New GW source populations:
 - Compact binaries: binaries with eccentric orbits, hyperbolic encounters, head-on collisions, extreme mass ratio, sub-solar mass binaries
 - GW bursts: core-collapse supernovae, neutron star or pulsar glitches, cosmic strings
- Multi-messenger GW sources (electromagnetic waves, neutrinos, cosmic rays): BNS, NSBH, BNS post-merger
- GW sources with new phenomena (usually weaker effects):
 - GR: pre- and post-merger higher harmonics, GW cross-polarization, black hole kicks, GW memory, effects of precession, high spins, black hole formation, lensed binaries
 - Beyond GR: GW echo, beyond-quadrupolar GW polarizations,

Model-independent searches

- Coherent WaveBurst (cWB, Klimenko+16) is a software designed to detect a wide range of burst transients without prior knowledge of the signal morphology
- cWB uses minimal assumptions, for example growing frequency over time in case of binaries
- Complementing template-based searches
- cWB has detected:
 - GW150914 the very first GW (PRL 116, 061102)
 - **GW190521** an intermediate mass binary black hole (PRL 125, 101102)
 - It regularly detects GWs together with template-based searches
- The cWB contributes results to several LVK papers during each observing run.

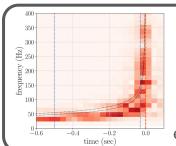

https://gwburst.gitlab.io/




Model-independent searches classification

Compact binary searches (minimally modeled)

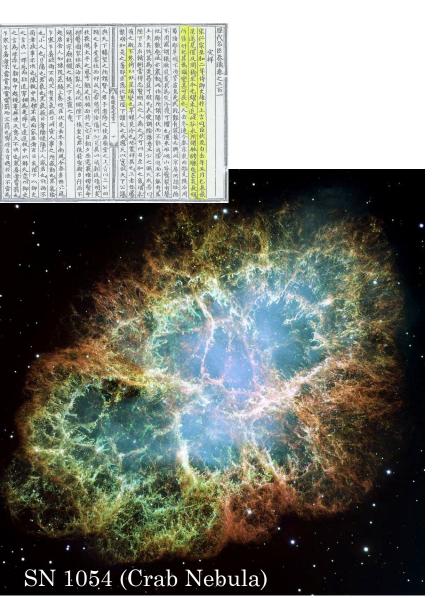
Generic searches (unmodeled)



Low-latency searches

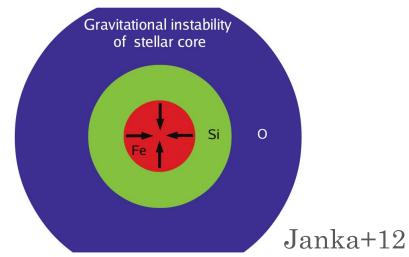
Public alerts for multi-messenger observations: electromagnetic, cosmic rays, and neutrino

e.g. Chaudhary+24 (2308.04545)

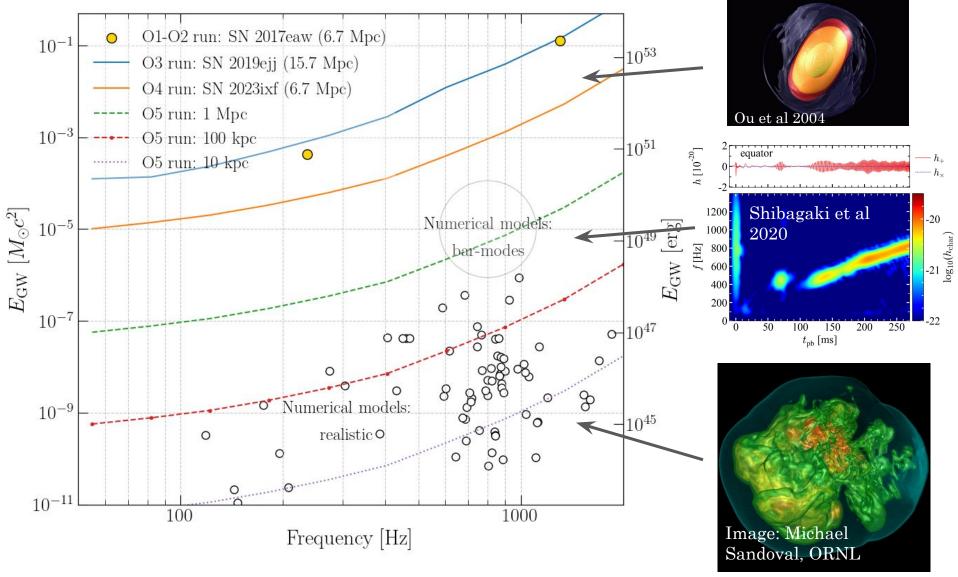

Searches for new phenomena

Higher harmonics GW cross-polarization Deviations from GR

e.g. Vedovato+22 (<u>2108.13384</u>)


Core-Collapse Supernova (CCSN)

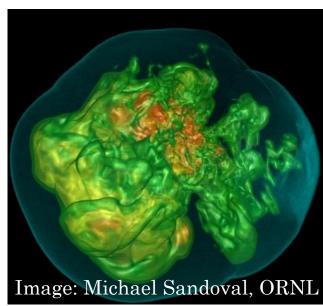
Nova on the sky!
1-2 per century in Milky Way (?)

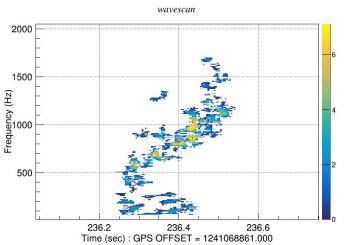

- Burning of a star: $H \rightarrow He \rightarrow ... \rightarrow Fe$
- After exceeding Chandrasekhar mass of $1.4~{\rm M}_{\odot}$ the iron core collapses.
- 99% of explosion energy escapes with neutrinos!

Explosion mechanism(s) is still unknown

When will we discover GWs?

(realistically: Galactic CCSN)

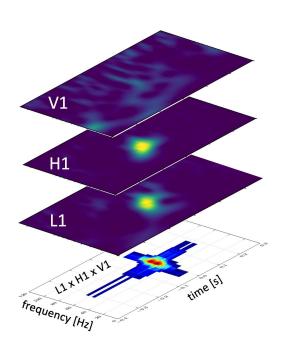

LVK and CCSN Theory


- CCSNe are the most challenging astronomical events to model:
 - All four fundamental forces are important
 - Neutrino transport
 - Computational challenges
- Last joint workshop between LVK and CCSN modelers was at Caltech in 2017
 - Creating Supernova Multimessenger Consortium
- Agenda/webpage: work in progress

LVK workshop: July 21-23, 2025, in Warsaw

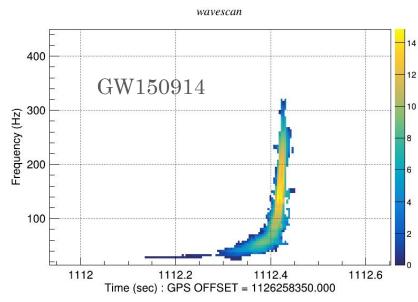
Note: it's right after the GR24/Amaldi16 meeting in Glasgow (July 14-18, 2025)

Example: Mezzacappa et al 2023

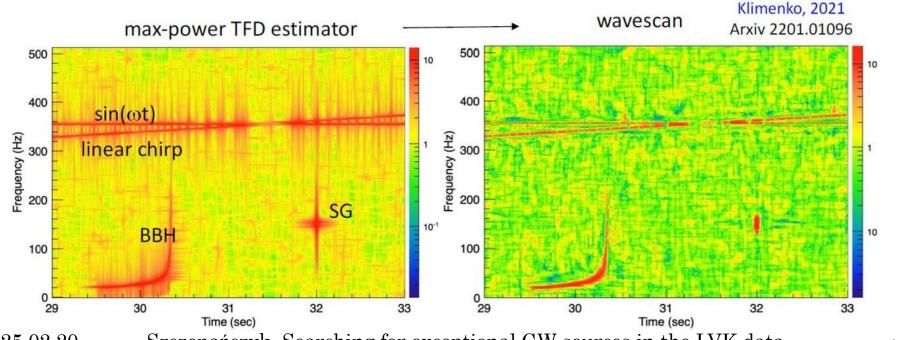

Summary

- Model-independent searches
 - Preparing for exceptional/special GW sources
- Core-Collapse Supernova (CCSN)
 - Next Galactic CCSN: one of the most interesting events of the century
- Joint workshop between LVK and CCSN modelers: July 21-23, 2025 in Warsaw

More info: https://www.fuw.edu.pl/~mszczepanczyk/


Extras

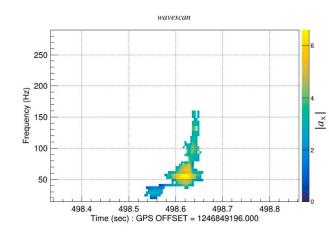
coherent WaveBurst (cWB)

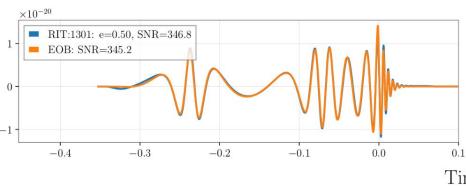


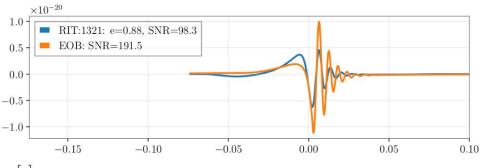
Constrained Likelihood

Wavescan

- Wavescan (Klimenko+22, <u>2201.01096</u>): high-resolution time-frequency transform
- Heisenberg rule for signal processing: $\sigma_t^2 \sigma_\omega^2 \ge \frac{1}{4}$
 - Multiresolution analysis and wavelet stack
- Wavescan transform combines the maps from different resolution into a single time-frequency map
 - Spectral and temporal leakage is minimized.


Szczepańczyk, Searching for exceptional GW sources in the LVK data


Wavelet stack


 $t=t_n$

Eccentric binaries

- Eccentric binaries: compact binaries elliptical orbits.
 - Dynamical formation
- Bhaumik et al (MS) 2024 (<u>2410.15192</u>)
 - Comparison between waveform models
 - Sensitivity studies and recommendations
- Mishra et al (MS) 2024 (<u>2410.15191</u>)
 - O3 data reanalysis
 - o 3 new GWs: consistent with stellar BHs, one event has large mass-ratio (possible dynamic formation)

O4 cWB low-latency searches

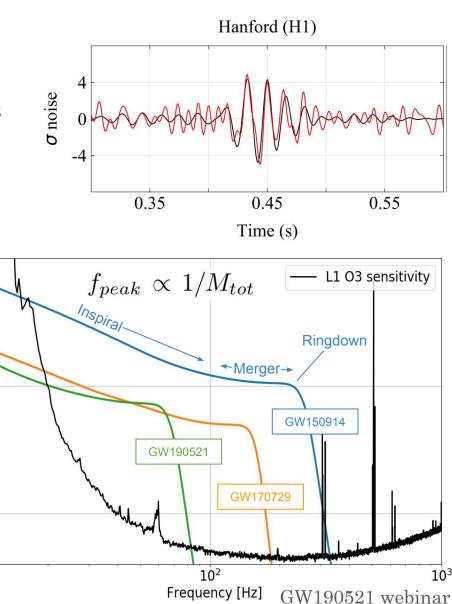
- The cWB searches: cWB-AllSky (generic) and cWB-BBH
- Analysis:
 - LH: searches, significance
 - LHV: sky map follow-up

cWB-AllSky (generic)

- cWB-XP and cWB-2G
- Public alert for GW bursts: "fluence" (~luminosity), peak frequency, duration
- Only one event so far <u>S200114f</u> (O3) classified as noise offline

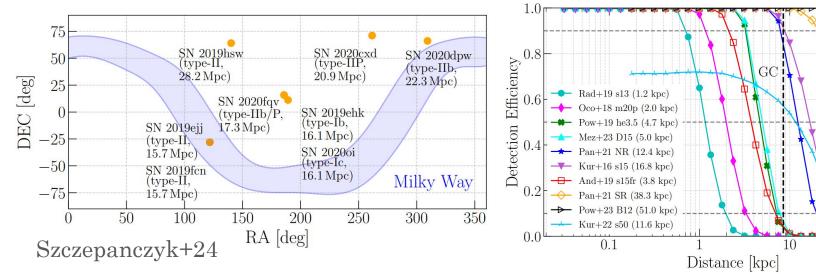
cWB-BBH search

- cWB-BBH events are treated as CBC (RODA: <u>M2200164</u>)
- 3 events so far
- It's capable to detect "vanilla" and special/exceptional compact binaries
- Complementing matched filtering
- It detects around **80**% of BBHs identified by matched filtering searches (HL network)


GW190521

 10^{-21}

Strain Amplitude [Hz^{-1/2}]


 10^{-23}

- Intermediate-mass black holes (IMBHs) between stellar mass (100 ${\rm M}_{\odot}$) and supermassive (10⁵ ${\rm M}_{\odot}$). The origin is not yet well understood.
 - Probing pair-instability mass gap (Stars with He mass in (64 M_o, 135 M_o)
 - Formation channels
 - Most distant GW sources
- GW190521 first conclusive evidence of an IMBH.
- No chirping structure
- Detection significance (see MS+21, 2009.11336):
 - Online: 1 per 28 years
 - Offline: 1 per 4900 years (established by cWB)
 - o Challenges: scatter noise, blips

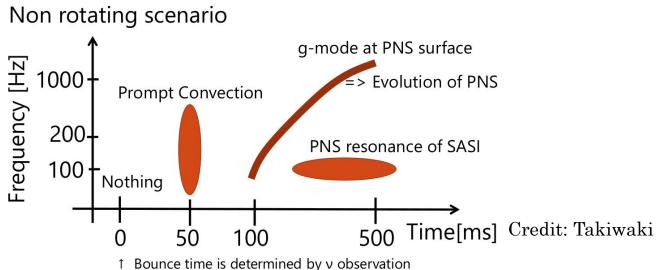
Optically targeted searches

- While waiting for a Galactic CCSN, we can systematically constrain its engine with CCSNe at MPc range -> optically targeted searches
- O1-O2 search (Abbott+19, <u>1908.03584</u>):
 - First observational constraints of a CCSN engine (my main PhD thesis result)
- O3 search (Szczepanczyk+24, <u>2305.16146</u>):
 - We could not beat previous limits
- SN 2023ixf search (Abac+24, <u>2410.16565</u>, special O4 paper):
 - GW energy emission: constraints improved by an order of magnitude

Szczepańczyk, Searching for exceptional GW sources in the LVK data

LMC

100


Abac+24

16

Parameter Estimation

Recently a lot of efforts to extract physical parameters from CCSN. See review in Mezzacappa&Zanolin+24 (2401.11635), examples:

- Proto-neutron star (PNS) evolution: Casallas-Lagos+23 (<u>2304.11498</u>), Bizouard+21 (<u>2012.00846</u>),
- Equation of State: Edwards+21 (2009.07367),
- SN kicks (GW memory): Richardson+21 (2109.01582)
- Standing Accretion Shock Instability: Takeda+21 (2107.05213)
- PNS rotation: Chan+21 (<u>ADS</u>), Hayama+18 (<u>1802.03842</u>)
- Rotation properties: Pastor-Marcos+23 (<u>2308.03456</u>), Villegas+23 (<u>2304.01267</u>)

