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« Dark sector can be multicomponent

« Two-component Coy DM: A DM explanation to the Galactic Centre excess

Results of phase space level analysis

Summary



Multicomponent Dark Sectors

e Canonical Weakly Interacting Massive Particle (WIMP) Dark Matter (DM)
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Multicomponent Dark Sectors

Canonical Weakly Interacting Massive Particle (WIMP) Dark Matter (DM)

The structure of SM as also well motivated beyond Standard Model theories suggestive of a
multicoomonent dark sector

Dark Matter (DM) being the lightest stable parficle/s of an extended (dark) sector
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Multicomponent Dark Sectors

Canonical Weakly Interacting Massive Particle WIMP

The structure of SM as also well motivated beyond Standard Model theories suggestive of a
multicopmonent dark sector

Dark Matter (DM) being the lightest stable parficle/s of an extended (dark) sector
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Multicomponent Dark Sectors

There can then exist many more processes (for change in number density as well as temperature)

A,B annihilation to SM
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Compu’roﬂonolly more chollenging (unless special circumstances allow for reduction of coupled equations)
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° Compu’roﬂonolly more chollenging (unless special circumstances allow for reduction of coupled equations)
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There can then exist many more processes (for change in number density as well as temperature)

other

e During chemical decoupling of DM, maintenance of kinefic equilibrium is not guaranteed
e Can expect to generate non-thermal shapes of the phase space distributions of the dark sector particles



Multicomponent Dark Sectors

® There can then exist many more processes (for change in number density as well as temperature)
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Compu’roﬂonolly more chollenging (unless special circumstances allow for reduction of coupled equations)

During chemical decoupling of DM, maintenance of kinefic equilibrium is not guaranteed

Can expect to generate non-thermal shapes of the phase space distributions of the dark sector particles
We carry out a closer study by way of example with a DM model of phenomenological interest with
suppressed elastic scatterings by construction: the Coy DM to explain the observed Galactic Cenfre Excess



Galactic Centre Excess: Coy Dark Matter

e Fermi-LAT observes an excess in the spatially extended y-rays
from the Galactic Centre with a spectrum that peaks at a few

GeV. Leading explanations: Fit fo Galactic Centre Excess (GCE) from DM

annihilation:
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Galactic Centre Excess: Coy Dark Matter

Fermi-LAT observes an excess in the spatially extended v-rays
from the Galactic Centre with a spectrum that peaks at a few
GeV. Leading explanations:

o DM annihilation
o  Millisecond Pulsar (MSP)

If DM sourced would also suggest large elastic scattering rates
from crossing symmetry ruled out by terrestrial experiments

DM SM |2
[0)
0
v
D
o
0
5

DM SM

N

| Indirect Detection/GCE >



Galactic Centre Excess: Coy Dark Matter

e Fermi-LAT observes an excess in the spatially extended y-rays
from the Galactic Centre with a spectrum that peaks at a few
GeV. Leading explanations:

o DM annihilation
o  Millisecond Pulsar (MSP)

e |f DM sourced would also suggest large elastic scattering rates
from crossing symmetry ruled out by terrestrial experiments
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e Coy DM: fermionic DM with pseudoscalar mediator and coupling with SM proportional to Yukawa couplings of
the SM fermions (Minimal Flavor Violation)
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Galactic Centre Excess: Coy Dark Matter

e Fermi-LAT observes an excess in the spatially extended y-rays
from the Galactic Centre with a spectrum that peaks at a few
GeV. Leading explanations:

o DM annihilation
o  Millisecond Pulsar (MSP)

e |f DM sourced would also suggest large elastic scattering rates
from crossing symmetry ruled out by terrestrial experiments

DM SM )
5]
o
¥4 velocity
o) suppressed
O
g.
DM SM
N

| Indirect Detection/GCE

Fit fo Galactic Centre Excess (GCE) from Coy
DM annihilation:

6.0F

20 25 30 35 40 45 50
mpw [GeV]
Boehm et al 2014

e Coy DM: fermionic DM () with pseudoscalar mediator (s) and coupling with SM proportional to Yukawa

couplings of the SM fermions (Minimal Flavor Violation)
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Galactic Centre Excess: Coy Dark Matter

e Fermi-LAT observes an excess in the spatially extended y-rays
from the Galactic Centre with a spectrum that peaks at a few
GeV. Leading explanations:

o DM annihilation
o  Millisecond Pulsar (MSP)

e |f DM sourced would also suggest large elastic scattering rates
from crossing symmetry ruled out by terrestrial experiments
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e Minimally extended coy DM: Two fermions (y, x,) with pseudoscalar mediator (s) and coupling with SM
proportional to Yukawa couplings of the SM fermions (Minimal Flavor Violation)
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Results: Double Coy Dark Matter
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We develop a code to solve for
this multicomponent DM at phase
space level: extending the publicly
available code DRAKE




A,B annihilation to SM
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Results: Double Coy Dark Matter

‘ ke N

AB sM 1 A B AB
|

AB sM | A B sM
[ ==

(at - piHapi)fi (pi' t) = é)ﬁ,SM—))(i,SM (pi' t) + é)(i,)(i—»SM,SM (pi' t) + Z CXi;Xi—’Xj:Xj (pir t)

conversion

elastic scattering

AB

Elastic scattering

1.0

0.8

0.6

0.4

0.2

0.0 —

IBE
nBE

10 20
p/T

30

1'2f 2(p)

Annihilations

Conversions

15

We develop a code to solve for
this multicomponent DM at phase
space level: extending the publicly
available code DRAKE

1.0

0.2

0.8
0.6 |

0.4

0.0
0

p/T

100

M,, = 44 GeV, M,, = 38 GeV
M, = 80 GeV
Ay, = 0.023, Ay, = 0.39, A, = 0.3



Results: Double Coy Dark Matter

16

A,B annihilation to SM conversion elastic scattering
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° Resonant annihilation of y,
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Results: Double Coy Dark Matter
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We develop a code to solve for
this multicomponent DM at phase
space level: extending the publicly
available code DRAKE
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Results: Double Coy Dark Matter
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Results: Doubled Coy Dark Matter

Changing conversion strength ‘c’ keeping annihilation strength constant
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Results: Doubled Coy Dark Matter

Changing conversion strength ‘¢’ keeping annihilation strength constant

10.

4.0
11.6

10.63

10.25

red. x

O xisxi<»SM,SM X >‘y
2 2 4
Ox1,X17X2X2 X )‘X1>‘X2 xc

2)\; o< constant

Modification of
the abundance of subdominant

component completely changes the
preferred region for the GCE fit

M,, = 44 GeV, M,, = 38 GeV
M, = 80 GeV
Ay, = 0.023, Ay, = 0.39, A, = 0.3



Results: Doubled Coy Dark Matter

242 2
UX1,X1<—>SM sM X )\y)\xl X a

Ay = Ag/e, Ay = Aca, Ay, 2 A c/a ) oy pesusM X AJAY, o 1/a?

2 2 4
JXl,X1<—>X2X2 X )‘x1)‘x2 xc

M,, =44GeV, M,, = 38GeV, M, = 80 GeV

. Ay, = Ay, = 0.05, A, =1

-20% ) 5
(Qh )fBE - (Qh )

nBE .
% 100 is valued -20% to 100%
(Qh2)nBE

10%

0%

-10%

-20%

-0.5 0.0 0.5 1.0 1.5

logy(c)




Results: Doubled Coy Dark Matter
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» The sector containing DM can in general be richly populated with multiple particles.

» The kinetic equilibrium of DM with SM cannot be guaranteed requiring a solution of the
at the phase-space level for a precise determination of
the relic abundance.

« We study the double coy DM as an example, to quantify the effect the conversion
processes on the departure from equilibrium and the evolution of phase space
densities, finding:

« Departure from kinetic equilibrium causes deviation in total relic abundance in
the range from around -20% to 50% in most of the interesting parameter space

* Much larger effect for the DM constituents separately: O(few)

+ Subdominant component can affect the present-day y-ray flux in a significant
way: completely changing the preferred region for the GCE fit

+ Extension of Coy DM allows for richer phenomenology: conversion-driven GCE
explanation

+ We develop a numerical framework of including conversions in a generic
two-component DM model at phase space level to be included in next public release
of Mathematica based code (Dark matter Relic Abundance out-of-Kinetic Equilibrium)
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Boltzmann equation at the phase space level

26

Solving the DM distribution function at the full phase space level:
0t fom — HpOpfom = Ceilfom] + Cannlfoml where, fpu = fom@, T).
CAN proceed fully numerically but it is fime and CPU costly, due to the multidimensional

integrationsin the collision operators:

1 Cetlfpm] = fdﬂ |M|DMSM—>DMSM( oM\P _feq_(pj) fllMSPZ_)fEJ(£4))
easier harder
Cannlfom] = de IMlDMDM—>SMSM( v\P1 f_mi(lzz) fz;(f%)_feq_(p_dr))

harder easier
Typically the average momentum transferred during the scattering eventsis small

— — — 1/-2 n —
8O @3 +ps—P1—D2) ® 3 (5 (Q-Vp3) §® (s — P1))

Colfoml =C2+ C4+Co+ Cg + - . .
1 /—‘ no m’re]gc;rchon
LD OnN jpm
Cel [fDM] = CFP = 2E )/(feq) FP(pl)'fDM(pI) Bringmann, Hoffman ‘06
1 . . Gondolo, Hisano, Kadota '12
A_ﬁ . & - Fokker Planck apprOXImatlon Binder, Bringmann, Gustafsson, Hryczuk “127],
'Ey ----DRAKE: publicly available code for solving at this full

phase space level i = dr,, dm,, dr, §® (@, +ps —ps —ps)



The Fokker Planck approximation

p’C

Coalfpml = Co +C4 + Co + Cg +

1 -
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Has all the nice features:
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When does the Fokker Planck approx. work?

» Arrived at by dropping higherorder termsin Ap/p and p, /E;.
« Very good “approximation” (O(1%)) while the conditions of the expansion hold true.

Q: How to know when the FP approximation works?

I[nﬂlz —_ tn 1 (S . (7711)/1/1 + 7?ISW7)2‘2?13(“ o (n/l[)[\/[ - 771&&4)2)71,3
L'-ll 1 i

||
o fransfer « relative velocity « velocities
momentum

With an efficiently implemented fully numerical' solver
for the Boltzmann equationinto DRAKE, we find that
The Fokker Planck approximation works well for:
1. Scattering particle with masses significantly
smaller than DM mass (small reduced mass = small

momentum transfer

2. DM temperatures close to the SM temperature

(eg.: near kinetfic decoupling)
&
3. Scattering amplitudes that aren’t strongly
dependent on momentum transfer (e dropped

higher order terms are more relevant for an amplitude sensitive to said
dropped quantity)
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Ala-Mattinen, Kainulainen ‘19
Hryczuk, Laletin ‘20

Aboubrahim, Klasen, Wiggering ‘23

Beauchesne, Chiang ‘24;



Improvement on Fokker Planck: Relic density

29

0tfom — HpOp fom = Cerlfom] + Cannlfom]

1 .
Cetlfpm] = Crp = z_El)/(feq) FP(p1).-fom(P1)

An overall factor 2 at the level of collision operator= 257% change in DM relic density
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Coy Dark Matter: 2-component

A,B annihilation to SM
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(at - piHapi)fi (i, t) = é)ﬁ,SM—»)(i,SM (pi, 1) + C)ﬁ,}ﬁ—»SM,SM (pi, t) + Z C)(i:)(i—’Xj:Xj (i, )

Collision operators:

Elastic scattering Annihilations i#]
Conversions
Cetlfom] = f dn |M|%M,SM—>DM,SM (fom;ae(@ ‘}feq (p3) — fom;ag (pZ)fcq (p4))
Cannlfom] = fdﬂ IM |50 pr—sm,sm ( a8 ) fom;as P2) — feq(P3)feq (174))

Ceonvlfom] = de |M|,24,A—»3,B Upm,a1)foma ®2) — Foms@®3)fomps(P4))
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Code to solve at Yield level:
MicrOMEGAs 6.0: N-component
DM

We develop a code to solve for this
multicomponent DM at phase
space level: extending the publicly
available code DRAKE
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