White dwarf cooling through neutrinos and L_{μ} - L_{τ}

Jaime Hoefken Zink NCBJ

JHEP 07 (2024) 096 [2405.00094]

PAiP-2025

Motivation and model

 $L_u - L_\tau$ model

Symmetry: from global to gauge

U(1) broken gauge: dark photon

Kinetic mixing with 1st gen.

It could explain anomalies...

Solving (g-2) $_{\mu}$ and H $_{0}$ tension

CMB vs standard candles

(type-la supernovae and cepheid variable stars)

White dwarfs

End of life of stars

Compact objects

Brown dwarf

13 - 80 M_J

White dwarf

0.17 - 1.33 $\rm M_{\odot}$

Neutron star

1.1 - 2.3 ${
m M}_{\odot}$

Black hole

Main characteristics of White Dwarfs

Density	 Between 10⁶ - 10⁹ kg/m³ Mainly composed by C or O. 	
Forces	 Gravitational force Degenerate pressure of e⁻ Coulomb forces Sirius B white dwarf 	
Mass	 Less than ~1.4 M (Chandrasekhar limit) 	
Eq. of state	 Salpeter + TOV equations (Tolman-Oppenheimer-Volkoff) 	

Sirius

WD cooling

 $-L_{\nu}-L_{\gamma}+L_{H}$

Hot WDs: Neutrino emission (plasmon decay)

Credits: Symmetry magazine

Cold WDs: Photon surface emission

Credits: Science

Plasmon decay

Charged current

Neutral current

Plasmon decay Expressions

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \frac{1}{\sqrt{4\pi\alpha}} \left[\varepsilon_{\mu}(\omega_l, q) C_V \left(\Pi_L(\omega_l, q) \left(1, \frac{\omega_l}{q} \hat{q} \right)^{\mu} \left(1, \frac{\omega_l}{q} \hat{q} \right)^{\nu} \right) \right. \\ \left. + \varepsilon_{\mu}(\omega_t, q) g^{\mu i} \left(C_V \Pi_T(\omega_t, q) \left(\delta^{ij} - \hat{q}^i \hat{q}^j \right) \right. \\ \left. + C_A \Pi_A(\omega_t, q) (i \varepsilon^{ijm} \hat{q}^m) \right) g^{\nu j} \right] \overline{u}(p_1) \gamma_{\nu} (1 - \gamma_5) v(p_2)$$

Plasmon decay Expressions

$$\mathcal{Q}_{\lambda} \equiv \int d^{3}\vec{q} \, \Gamma_{\lambda}(q) \, \omega_{\lambda}(q) n_{B}(\omega_{\lambda}(q), T)$$

$$\begin{aligned} \mathcal{Q}_{T} &= 2 \Big(\sum_{\nu} C_{V}^{2} \Big) \frac{G_{F}^{2}}{96\pi^{4}\alpha} \int_{0}^{\infty} dq \ q^{2} Z_{t}(q) \Big(\omega_{t}(q)^{2} - q^{2} \Big)^{3} n_{B}(\omega_{t}(q)) \\ \mathcal{Q}_{A} &= 2 \Big(\sum_{\nu} C_{A}^{2} \Big) \frac{G_{F}^{2}}{96\pi^{4}\alpha} \int_{0}^{\infty} dq \ q^{2} Z_{t}(q) \Big(\omega_{t}(q)^{2} - q^{2} \Big) \Pi_{A}(\omega_{t}(q), q)^{2} n_{B}(\omega_{t}(q)) \\ \mathcal{Q}_{L} &= \Big(\sum_{\nu} C_{V}^{2} \Big) \frac{G_{F}^{2}}{96\pi^{4}\alpha} \int_{0}^{\infty} dq \ q^{2} Z_{I}(q) \omega_{I}(q)^{2} \Big(\omega_{I}(q)^{2} - q^{2} \Big)^{2} n_{B}(\omega_{I}(q)) \end{aligned}$$

$$L_{
u}=4\pi~\int_{0}^{R_{
m WD}}\mathcal{Q}(r)~r^{2}~dr$$

BSM in WDs

Contribution from A'

Plasmon decay through A'

15

$$\begin{array}{c} \bigcap 1 & \text{Heavy case} \\ m_{A'}^{2} \gg Q^{2} \end{array} \quad F_{\text{DS}} = \sum_{\alpha} \left(C_{V}^{\alpha,\text{SM}+\text{BSM}} \right)^{2} / \sum_{\alpha} \left(C_{V}^{\alpha,\text{SM}} \right)^{2} - 1 \\ O2 & \text{Ultra light case} \\ m_{A'}^{2} \ll Q^{2} \end{array} \quad \boxed{\prod_{A'}^{\mu\nu} = F_{A'}P_{L}^{\mu\nu} + G_{A'}P_{T}^{\mu\nu}} \\ D_{A'}^{\mu\nu} = \frac{-ig^{\mu\lambda}}{Q^{2} - m_{A'}^{2} - F_{A'}} P_{L\lambda}^{\nu} + \frac{-ig^{\mu\lambda}}{Q^{2} - m_{A'}^{2} - G_{A'}} P_{T\lambda}^{\nu} \\ \text{subtleties} \\ O3 & \text{Resonant case} \\ m_{A'} \sim \omega_{p} \end{array} \quad \begin{array}{c} G_{\text{BW}}^{\mu\nu}(Q^{2}) = \frac{-i(g^{\mu\lambda} - q^{\mu}q^{\lambda}/m^{2})}{Q^{2} - m^{2} - \text{Re}(F) - i\,\text{Im}(F)} P_{L\lambda}^{\nu} \\ + \frac{-i(g^{\mu\lambda} - q^{\mu}q^{\lambda}/m^{2})}{Q^{2} - m^{2} - \text{Re}(G) - i\,\text{Im}(G)} P_{T\lambda}^{\nu} \end{array}$$

From $\Pi^{\mu\nu}$ at T = 0 with v

Final results (1)

Final results (2)

Summary

SUMMARY

What was shown	The contribution from L _µ - L _τ dark photon to plasmon decay in white dwarfs.
• What we found •	White dwarfs can be used to set limits to the BSM model shown, such that part of the double solution ((g-2) _µ and Hubble tension) is excluded. There is a strong effect from the resonant region.
• Pheno tasks	Look for new observations from CASTOR telescope in the near future.
Future prospects •	Study these effects in SNe, red giants

Thank you!

Dziękuję bardzo!

Appendices

Current constraints to the model

BBN	At masses below O(10) MeV the dark photon A' contributes significantly to the heating of the neutrino gas in the early universe leading to a too large number of neutrino degrees of freedom, ΔN_{eff} , during BBN.
ΝΑ64μ	By using a missing energy-momentum technique with a high energy muon beam.
Borexino	From the measurement of the ^7Be solar neutrino flux, masses of m_{A'}~~10 MeV are excluded for g_{\mu\tau}~~0.0005.
BaBar	From resonance searches in four-muon production, high masses excluded.
COHERENT	From measurements of coherent elastic neutrino-nucleus scattering (CEvNS) with a Csl[Na] target, high couplings excluded.
CHARM-II	From the search for neutrino trident production, for masses ~ 100 MeV.