Hearing the Universe Hum with Pulsar Timing Array: Gravitational Waves and Black Holes

Anish Ghoshal

Institute of Theoretical Physics, University of Warsaw, Poland

anish.ghoshal@fuw.edu.pl

February 2025 PAiP 2025 Warsaw

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Broader Perspective:

Recent pulsar timing array measurements of stochastic GW signal.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Supermassive Black Hole Mergers
- Presence of Dark Matter and Dark Matter annihilation
- Tomography of Dark Matter Profiles
- Conclusions

PULSARS

Rotation Axis

Radiation Beams

Animation by NASA's Goddard Space Flight Center

Magnetic Field Axis

TIMING RESIDUALS

Pulses expected from Timing Model

 δt timing residuals

Pulses Recorded by Radio Telescope

A GALAXY-SIZE DETECTOR FOR GWs.

67 pulsars observed by NG

observing baseline of 15 yrs

Animation by NSF

distance to pulsars up to ~kpc IPTA DR3 will contain >100 pulsars

credits Keyi "Onyx" Li / NSF / NANOGrav

A GALAXY-SIZE DETECTOR FOR GWs.

67 pulsars observed by NG

observing baseline of 15 yrs

Animation by NSF

distance to pulsars up to ~kpc IPTA DR3 will contain >100 pulsars

credits Keyi "Onyx" Li / NSF / NANOGrav

ORRELATIONS EXAMPLE

EVIDENCE FOR GWB

EVIDENCE FOR GWB

NANOGrav: 68 pulsars, 16yr of data ~3-4 σ significance

EPTA + InPTA: 25 pulsars, 24yr of data $\sim 3\sigma$ significance

32 pulsars, 18yr of data $\sim 2\sigma$ significance

SPECTRUM

EPTA + InPTA

Probing the Dark Matter density with gravitational waves from super-massive binary black holes

Anish Ghoshal^a, Alessandro Strumia^b

^a Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Poland ^b Dipartimento di Fisica, Università di Pisa, Italia

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pulsar Timing Arrays observe gravitational waves. Assuming a power-law

$$\Omega_{\rm GW} \equiv \frac{1}{\rho_{\rm cr}} \frac{d\rho_{\rm GW}}{d\ln f} = \frac{\pi f^2 h_c^2}{4G}, \qquad h_c(f) = A_{\rm GW} \left(\frac{f}{f_{\rm PTA}}\right)^\beta$$

they find $\beta \approx -0.1 \pm 0.3$ around $f_{\rm PTA} \equiv 1/10 \, {\rm yr} \sim {\rm nHz}$ and $\Omega_{\rm GW} h^2 \sim 10^{-9-10}$.

Both roughly compatible with the astrophysical background, expected from inspiralling super-massive black hole binaries (SMBH) with masses $M_{1,2} \sim 10^{8-9} M_{\odot}$ at red-shift $x \leq 0.3$, that predicts $\beta = -2/3$ when free.

Any fundamental implication?

New physics possible, but unicorns less plausible than horses.

Dark Matter can affect SMBH

(日本)(四本)(日本)(日本)(日本)

DM friction

Can approximate SMBH as Newtonian circular non-relativistic orbit,

$$\frac{v^2}{r} = \omega^2 r = \frac{G(M_1 + M_2)}{r^2}$$

- Power radiated via GW: $W_{\text{GW}} = 32G\mu^2\omega^6 r^4/5$, $\mu = M_1M_2/(M_1 + M_2)$.
- Power radiated via friction on (dark) matter: W_{DM} = 4πG²μ²ρ_{DM}pℓ/v where φ ~ 1/2 is the fraction of DM slower than v, ℓ ~ 10 is an IR log. It's just W_{DM} ~ πb² δv ρ_{DM} with b ~ R_{Sch}/|v − v_{DM}| and v ~ v_{DM}.

DM energy loss dominates at $\omega < \omega_{cr}$ around the observed range

$$\omega_{\rm cr} \approx \frac{\rho_{\rm DM}^{3/11}}{G^{2/11} M^{5/11}} \approx 0.23\,{\rm nHz} \left(\frac{10^8 M_\odot}{M}\right)^{5/11} \left(\frac{\rho_{\rm DM}(r_{\rm cr})}{0.4\,{\rm GeV}/\,{\rm cm}^3}\right)^{2/11}.$$

Imposing $\dot{E} = -W_{\rm GW} - W_{\rm DM}$, the spectral slope in $f = \omega/\pi (1+z)$ changes as:

$$\frac{dE_{\rm GW}}{d\omega} = \frac{W_{\rm GW}}{\dot{\omega}} = \begin{cases} \frac{M_1 M_2 G^{2/3}}{3(M_1 + M_2)^{1/3}} \omega^{-1/3} & {\rm GW-dominated}, \\ \frac{8G^{1/2} M_1 M_2 (M_1 + M_2)^{4/3} \omega^{10/3}}{15 \pi \wp \ell \, \rho_{\rm OM} (G^{1/3} (M_1 + M_2)^{1/3} / \omega^{2/3})} & {\rm DM-dominated}. \end{cases}$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Expected DM dust density:

- From rotation curves at large r, e.g. ρ[⊙]_{DM} = 0.4 GeV/ cm³ in MW.
- ρ_{DM GC} ≈ ρ[⊙]_{DM} (r_⊙/r_{spike})^{p'} with p' = 1 from NFW.
- Possibly an extra spike around BH, $\rho_{\rm DM}(r) \approx \rho_{\rm DM \, GC} (r_{\rm spike}/r)^p$ at

(日)

э

 $r < r_{\rm spike} \sim 0.2r_{\rm in}$ with p = 1.5 - 2.5, maybe $p \approx (9 - 2p')/(4 - p')$. Fundamental physics effects:

- DM annihilations limit $\rho_{\rm DM}(r) \leq m/\langle \sigma v \rangle \tau_{\rm BH}$ with $\tau_{\rm BH} \sim 10^{10} \, {\rm yr}$
- Ultra-light DM can give a soliton core ρ_{DM} ∝ e^{-r/λ_{DM}}

GW

Astrophysical uncertainties

Some washing out with BH masses in the expected range $M \sim 10^{8-9} M_{\odot}$:

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

DM density could be probes via measurements in pulsar timing arrays.

Impact of eccentric orbits (Chen+ (2024)):

æ

GW

Summary:

- NANOGrav and other PTA data sees evidence of stochastic GW background (SGWB). They could arsie from supermassive black hole mergers but simple mergers does not match with the signal.
- astrophysical interpretation involves supermassive black holes with dynamical friction and dark matter density.
- Assumming presence of DM profiles, a galaxy tomography of DM can be performed by investigating the features in the SGWB.
- After our analysis NANOGrav carried out this investigation in more sophisticated manner in Ref: 2411.05906 and various constraints wee obtained on DM physics related to annihilation etc.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @