Eccentric Inspiral-Merger-Ringdown Models for Binary Black Holes with Gauge-invariant Eccentricity

Pratul Manna^{1,3}

(Ph.D. Supervisor: dr hab. Dorota Rosińska, prof. ucz.)

Collaborators: Tamal RoyChowdhury², Chandra Kant Mishra³

¹Astronomical Observatory, University of Warsaw, Poland ²University of Wisconsin-Milwaukee, USA ³Indian Institute of Technology Madras, India

February 20, 2025

Why Eccentricity?

• Binary evolution phases : **Inspiral** (perturbative methods), **Merger** (numerical relativity) and **Ringdown** (black hole perturbation theory)

 Residual eccentricity can be a unique tool to identify binaries formed in dynamical environments – Lack of accurate eccentric models at present.

・ロト・日本・日本・日本・日本・日本

Gauge-invariant eccentricity

$$e_{\rm gw} = \cos(\psi/3) - \sqrt{3}\sin(\psi/3) ,$$

$$\psi = \arctan\left(\frac{1 - e_{\omega_{22}}^2}{2e_{\omega_{22}}}\right) \,,$$

$$e_{\omega_{22}} = \frac{\sqrt{\omega_{22}^{\rm p}} - \sqrt{\omega_{22}^{\rm a}}}{\sqrt{\omega_{22}^{\rm p}} + \sqrt{\omega_{22}^{\rm a}}},$$

- Eccentricity definition based on waveform quantities, not on orbital elements.
- Reduces to Newtonian definition of eccentricity at 0PN order.

э

PN-NR Comparison and Hybrids

Figure: PN-NR amplitude and frequency comparison for $\ell = 2, m = 2$ spherical harmonic mode.

Figure: PN-NR eccentric hybrid waveform containing NR data.

Dominant mode model

• Hybrids are used as targets for calibration purposes.

Figure: A dominant ($\ell = 2, m = 2$) mode model reconstructed by matching an eccentric inspiral (ECCENTRICTD) with a quasi-circular waveform (SEOBNRv4) for merger-ringdown phase. For comparison, the target hybrid is also shown here.

$$\mathcal{A}_{22}^{\text{model}}(t) \equiv \tau_a(t) \mathcal{A}_{22}^{\text{IMR}}(t) + (1 - \tau_a(t)) \mathcal{A}_{22}^{\text{inspiral}}(t)$$

イロン イヨン イヨン ・

Gravitational waveform modelling 000

Mismatch plots

• 1st row: Mismatch against hybrids. 2nd row: Mismatch against イロト イヨト イヨト イヨト э TEOBRESUMS-DALI.

Conclusions

- We constructed a set of 20 long eccentric hybrids (including dominant and higher modes) containing the accurate numerical relativity data.
- We developed a dominant mode model which performs better than state-of-the-art quasicircular templates in capturing eccentricities in the range $0 \le e_0 \le 0.3$.

References:

1) A. Chattaraj, T. RoyChowdhury, Divyajyoti, C. K. Mishra, and A. Gupta. 2022, Phys. Rev. D, 106:124008.

2) P. Manna, T. RoyChowdhury, and C. K. Mishra. An improved IMR model for BBHs on elliptical orbits. 2024, arXiv: 2409.10672.

Gravitational waveform modelling

Conclusions

Thank you!

Credit: https://gigazine.net/gsc_news/

Gravitational waveform modelling 000

Backup Slides

Count	Simulation ID	q	x_0	e_0	l_0	$N_{\rm orb}$
Training Set						
1	HYB:SXS:BBH:1355	1	0.0389	0.173	2.455	63.0
2	HYB:SXS:BBH:1356	1	0.0375	0.230	1.717	65.5
3	HYB:SXS:BBH:1358	1	0.0340	0.322	1.215	69.5
4	HYB:SXS:BBH:1359	1	0.0347	0.317	1.131	67.0
5	HYB:SXS:BBH:1360	1	0.0317	0.416	0.796	64.0
6	HYB:SXS:BBH:1361	1	0.0313	0.416	0.796	66.0
7	HYB:SXS:BBH:1364	2	0.0391	0.172	2.681	69.0
8	HYB:SXS:BBH:1365	2	0.0376	0.209	2.262	72.5
9	HYB:SXS:BBH:1366	2	0.0344	0.320	1.299	74.0
10	HYB:SXS:BBH:1367	2	0.0346	0.320	1.299	73.5
11	HYB:SXS:BBH:1368	2	0.0338	0.324	1.382	77.5
12	HYB:SXS:BBH:1372	3	0.0344	0.300	1.789	90.0
13	HYB:SXS:BBH:1373	3	0.0344	0.300	1.789	89.0
Testing Set						
14	HYB:SXS:BBH:1357	1	0.0344	0.322	1.215	67.5
15	HYB:SXS:BBH:1362	1	0.0328	0.483	0.464	48.5
16	HYB:SXS:BBH:1363	1	0.0308	0.505	0.590	51.5
17	HYB:SXS:BBH:1369	2	0.0329	0.478	0.545	52.5
18	HYB:SXS:BBH:1370	2	0.0291	0.508	0.628	63.0
19	HYB:SXS:BBH:1371	3	0.0380	0.204	2.621	82.5
20	HYB:SXS:BBH:1374	3	0.0290	0.495	0.832	77.5

$$\tau_{\rm a}(t) \equiv \left\{ \begin{array}{ll} 0 & {\rm if} \ t < t_{\rm i} \\ \frac{t-t_{\rm i}}{t_{\rm f}-t_{\rm i}} & {\rm if} \ t_{\rm i} \leq t < t_{\rm f} \\ 1 & {\rm if} \ t_{\rm f} \leq t. \end{array} \right. \label{eq:tau_alpha}$$