# Forecast for the future detection of gravitational waves coming from supercooled phase transition

#### Adam Gonstal, University of Warsaw, Faculty of Physics

in collaboration with M. Lewicki and B. Świeżewska, to be published soon

## FIRST-ORDER PHASE TRANSITION

Courtesy of B. Świeżewska



#### Simplified key idea

- How can we differentiate between models when observing gravitational waves coming from a supercooled phase transition (PT)?
- Do gravitational waves carry any information about fundamental interactions?



- Our answer lies in
  measurement of scalar field
  decay rate Γ/H, from the
  gravional wave spectra. This
  parameter determines how long
  reheating lasts after the phase
  transition.
- Different models yield different values of  $\Gamma/H$ .
- Precise measurement of Γ/H, would serve as messenger about fundamental interactions.

#### Gravitational waves from supercooled phase transition.



#### Results: relative error and detectability in LISA



#### Results: relative error and detectability in LISA



Conclusions:

- We will be able to determine temperature and  $\beta$ /H assuming we will observe such a signal.
- Determining Γ/Η would require a very strong signal, which might be realized in nature.
- Gravitational wave may give us information about fundamental physics models.

### Fisher Estimation

Back-up-slide

IX. On the Mathematical Foundations of Theoretical Statistics.

By R. A. FISHER, M.A., Fellow of Gonville and Caius College, Cambridge, Chief Statistician, Rothamsted Experimental Station, Harpenden.

Communicated by Dr. E. J. RUSSELL, F.R.S.

Received June 25,-Read November 17, 1921.

$$F_{\alpha\beta} = T_{\rm obs} \int_{f_{\rm min}}^{f_{\rm max}} \mathrm{d}f \frac{\frac{\partial \Omega_{\rm GW}}{\partial \theta_{\alpha}} \frac{\partial \Omega_{\rm GW}}{\partial \theta_{\beta}}}{\left(\Omega_{\rm noise} + \Omega_{\rm GW}\right)^2}$$

The inverse of the Fisher matrix gives the squared covariance matrix

$$\sigma^2 = F^{-1} \, .$$

#### Arxiv:2108.01167



| Ref : LISA-LCST-SG | ef : LISA-LCST-SGS-TN-001 |  |
|--------------------|---------------------------|--|
| ssue : 1           | Revision : 0              |  |
| Date : 2021/08/04  | Page : 1/ 42              |  |

#### LISA Sensitivity and SNR Calculations

| N/Ref :  | LISA-LCST-SGS-TN-001                                                                                                                                                                                                                                                                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title    | LISA Sensitivity and SNR Calculations                                                                                                                                                                                                                                                                                                                            |
| Abstract | This Technical Note (LISA reference LISA-LCST-SGS-TN-001) describes the com-<br>putation of the noise power spectral density, the sensitivity curve and the signal-<br>to-noise ratio for LISA (Laser Interferometer Antenna). It is an applicable docu-<br>ment for ESA (European Space Agency) and the reference for the LISA Science<br>Requirement Document. |

#### Results: relative error and detectability in LISA (back-up-slide)



Conclusions:

- We will be able to determine temperature and  $\beta$ /H assuming we will observe such a signal.
- Determining Γ/Η would require a very strong signal, which might be realized in nature.
- Gravitational wave may give us information about fundamental physics models.