JOINT NEUTRINO OSCILLATION ANALYSIS OF ATMOSPHERIC AND BEAM DATA IN THE SUPER-KAMIOKANDE DETECTOR

Prithivraj Govindaraj <u>p.govindaraj@uw.edu.pl</u> University of Warsaw

NEUTRINO MIXING MATRIX

Oscillation parameters Flavour and mass eigenstates are related by $\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ solar Mixing angles: θ_{12} , θ_{13} & θ_{23} CP Violation parameter: δ_{CP} neutrinos T₂K, reactors where Mass terms: $\Delta m_{21}^2 \& \Delta m_{32}^2$ $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $c_{ii} = \cos \theta_{ii}$ $s_{ii} = \sin \theta_{ii}$ atmospheric neutrinos

EXPERIMENTS

FACULTY OF HYSICS TZK DEC

 \rightarrow T2K:

- Measure neutrino oscillation parameters including CP violation in the neutrino sector
- Addressing the neutrino mass ordering
- Key Measurement:
 - $\begin{array}{l} \circ \quad \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \, \& \overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{e} \, appearance \, (for \, \delta_{CP} \, studies) \\ \circ \quad \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu} \, \& \overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{\mu} \, disappearance \, (for \, \theta_{23}, \Delta m_{32}^{2}) \end{array}$

- \rightarrow SK:
 - Detect neutrinos from T2K, the Sun, cosmic rays, and supernovae
 - Major Contributions:
 - First confirmation of neutrino oscillations (1998, Nobel Prize 2015)
 - Supernova neutrino detection (SN 1987A)

DIFFERENCES

Feature	T2K Accelerator Neutrinos	SK Atmospheric Neutrinos		
Source	Neutrinos from the J-PARC accelerator in Japan	Cosmic ray interactions in the atmosphere		
Energy Source	0.2 – 2 GeV (narrow energy spectrum)	100 MeV to tens of GeV (wide spectrum)		
Baseline (L)	~295 km (fixed distance)	Varies from ~20 km to ~12,700 km (diameter of Earth)		
Neutrino Types	Mostly v_{μ} and \overline{v}_{μ} , with some v_{e}	Mixture of v_{μ} , v_{μ} , v_{e} and v_{e}		
Matter Effects	Minimal, as neutrinos travel short distance	Strong matter effects for neutrinos as they are traveling large distance through Earth		

JOINT FIT

Parameter	T2K Sensitivity	SK Atmospheric Sensitivity	Combined Benefit
δ _{CP} (CP violation phase)	Sensitive via $v_{\mu} \rightarrow v_{e} \& \bar{v}_{\mu} \rightarrow \bar{v}_{e}$ appearance	Small contribution	Breaks degeneracy with mass ordering
sign(Δm^2_{32}) (Mass Ordering)	Weak sensitivity	Sensitive via matter effects	Helps resolve true hierarchy

Systematic	Flux:	Cross-section:		Detector:		
Model	The beam and atmospheric flux models are independent	 Low (T2K) High (SK) 	energy samples & SK Sub-GeV) energy samples only)	There is correlation between SK and T2K detector errors		

JOINT FIT RESULT

Comparison of the 2D posterior distribution for T2K-only and SK-only (with T2K near detector constraint) fits compared to the joint SK+T2K fit.

- 1. CP conservation ($\delta_{CP} = 0, \pi$) is excluded $< 2\sigma$
- 2. Slightly prefers the normal mass ordering

Phys. Rev. Lett. 134, 011801

JOINT FIT FIRST RESULT

Comparison of the 2D posterior distril SK+T2K fit.

CP conservation ($\delta_{CP} = 0, \pi$) is excluded around 2σ Slightly prefers the normal mass ordering 1.

 $\delta_{\rm CP}$

2.

) fits compared to the joint

FUTURE PLANS

• Incorporating Additional Data

- SK Phase I-III, V
- T2K Multi-ring samples (availability depends on cross-section model)
- Improvement in the systematic uncertainties for the second Joint-Fit
- Cross-Section & Flux Model Updates
 - After 2022 major updates have been made to Cross section and Flux Models
- Correlated Flux Model Development
 - The beam and atmospheric flux models were independent for first Joint-Fit analysis

Hoping for the better results in the second Joint-Fit Analysis !!!!!!

REFERENCES

- 1. First joint oscillation analysis of Super-Kamiokande atmospheric and T2K accelerator neutrino $\underline{data} \rightarrow \text{Only publication as of now}$
- 2. Combined neutrino oscillation analysis between Super-Kamiokande and T2K by Aoi Eguchi
- 3. Joint Analysis between Super-Kamiokande atmospheric and T2K data by Zhenxiong Xie
- 4. <u>T2K and T2K+SK Joint Fit by Tristan Doyle</u>
- 5. <u>T2K+SK Joint Beam and Atmospheric Fit by Dan Barrow</u>

OSCILLATION ANALYSIS STRATEGY

JOINT FIT (SAMPLES)

SK-IV atmospheric (18 samples) and the T2K Run 1-10 accelerator (5 samples) neutrinos

Sample name	Category	Selection							
SubGeV elike 0de SubGeV elike 1de SubGeV mulike 0de SubGeV mulike 1de SubGeV mulike 2de SubGeV pi0like MultiGeV elike nue MultiGeV elike nuebar	Fully Contained (FC)	Sub-GeV	Single ring Two rings Single ring	e-like μ-like Two e- e-like	0 decay- e 1 decay- e 0 decay- e 1 decay- e \geq 2 decay- e like rings and pass M_{inv} cut \geq 1 decay- e 0 decay- e	FC		PC	Upmu
MultiGeV mulike MultiRing elike nue MultiRing elike nuebar MultiRingOther MultiRing mulike		Multi-GeV	Multi rings	μ-like e-like μ-like	Pass MME likelihood cut and ν_c -like Pass MME likelihood cut and $\bar{\nu}_c$ -like Fail MME likelihood cut	Cut Min. E_{vis} Min. momentum	FHC/RHC 1R μ $p_{\mu} > 200 \text{ MeV}$	$FHC/RHC \ 1Re$ $E_{\rm vis} > 30 \ {\rm MeV}$ $p_e > 10$	FHC 1Re1de
PCStop PCThru	Partially Contained (PC)	Smaller cha Larger char	rge depositior ge deposition	in oute	er detector	Fiducial volume	$d_{\text{wall}} > 50 \text{ cm}$ $d_{\text{to-wall}} > 250 \text{ cm}$	$d_{ m wall} > 80~{ m cm}$ $d_{ m to-wall} > 170~{ m cm}$	$d_{ m wall} > 50 m cm$ $d_{ m to-wall} > 270 m cm$
JpStop mu JpThruNonShower mu	Up-going Muon (UpMu)	Stopping Through-go	ing non-show	ering		Decay electron	≤ 1	= 0	= 1
UpThruShower mu		Through-go	ing showering			$\begin{array}{c} \text{Max. } E_{\text{rec}} \\ \hline \\ \text{Additional cut} \end{array}$	π^+ rejection	$E_{ m rec} < 1$ $\pi^0 m rej$.25 GeV ection

FUTURE PLANS

Short-Term Goals (Attainable Soon)

- Shift-Smear Detector Model
 - Improves systematics treatment for joint fits
 - Step-size tuning and alignment to OA2024
- Cross-Section & Flux Model Updates
 - Transition to OA2024 models
 - Incorporate new ND samples
- Incorporating Extra Samples
 - SK Phase I-III, V
 - T2K Multi-ring samples (availability depends on cross-section model)

Long-Term Goals (Requires More Work)

- Hybrid Pi0 Sample Generation
- Event Migration
 - Migration between sub-GeV samples feasible
 - Higher GeV migration requires event selection code changes
- Momentum/Energy Scale Shifts
 - Requires rewriting framework
- SK Phase VI Implementation
- CC1pi Interaction Model Modifications
- Correlated Flux Model Development