

Neutrino Physics: contribution from Neutrinoless Double Beta Decay by the LEGEND Experiment

Grzegorz Zuzel

on behalf of the LEGEND Collaboration

Outline

- Status of Neutrino Physics
- Double Beta Decay
- LEGEND Overview
- LEGEND-200 Result
- Summary

Status of Neutrino Physics

}β

Cosmol.

Oscillations

Open questions:

- Nature of neutrino
- Absolute neutrino mass
- Neutrino mass hierarchy
- CP violation
- Existence of sterile neutrino(s)

What we do know:

- Oscillating neutrinos must have mass (at least two neutrinos must be massive) – physics BSM
- Neutrino oscillation parameters measured presently with good accuracy of 1-4 % (1 σ)
- Some experimental results are in tension (e.g. T2K vs. NOvA)
- Weak (2.7 σ) preference for NO from the global fit
- SBL and Ga anomaly confirmed

Large Enriched Germanium Experiment for Neutrinoless BB Decay

Neutrino Physics

```
Double \beta decay
```

LEGEND

```
LEGEND-200
```

Neutrino Mass: Cosmology

- Fit various models to cosmological data (CMB, BAO, BBN, ...)
- Data from varied, complimentary data sets
- Model-dependent

$$M_{\text{tot}} = m_0 + \sqrt{\Delta m_{21}^2 + m_0^2} + \sqrt{\Delta m_{31}^2 + m_0^2} \qquad (\text{NO}) \qquad \longrightarrow \qquad M_{\text{tot}} \gtrsim 0.06 \text{ eV}$$

$$M_{\text{tot}} = m_0 + \sqrt{|\Delta m_{32}^2| + m_0^2} + \sqrt{|\Delta m_{32}^2| - \Delta m_{21}^2 + m_0^2} \qquad (\text{IO}) \qquad \longrightarrow \qquad M_{\text{tot}} \gtrsim 0.1 \text{ eV}$$

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Double β decay

LEGEND

LEGEND-200

PAiP-2025 conference "Particle Astrophysics in Poland", 20- 21.02.2025, Warsaw, Poland

Neutrino Mass: KATRIN

Germanium Experiment for Neutrinoless BB Decay

Neutrino Physics

Double β decay

LEGEND

Summary

LEGEND-200

 $m_v < 0.45 \text{ eV} (90\% \text{ CL})$

Double Beta Decay

Large Enriched Germanium Experiment

In a number of even-even nuclei, β decay due to energy/angular momentum balance is forbidden, while double beta decay from a nucleus (A,Z) to (A, Z+2) is energetically allowed.

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Double Beta Decay Modes

 $(A,Z) \rightarrow (A, Z+2) + 2e^{-} + 2\bar{\nu}_{e}$ $\Delta L = 0$ $T_{1/2} \sim 10^{18} - 10^{24} \text{ yr}$ $(A,Z) \rightarrow (A, Z+2) + 2e^{-1}$ $\Delta L = 2$ $T_{1/2}^{exp} > 10^{26} \text{ yr}$

Double Beta Decay Modes

Neutrino Mass / Hierarchy

Physics Beyond the Standard Model

If $0\nu\beta\beta$ decay observed:

Neutrino Physics

Double β decay

LEGEND

Summary

LEGEND-200

- Neutrino is a Majorana particle (its own antiparticle)
- Lepton number is not conserved
- Dealing with physics beyond the Standard Model

 $0\nu\beta\beta$ decay gives opportunity to determine:

- Absolute neutrino mass scale (meV scale !)
- Neutrino mass hierarchy
- CP violation in the lepton sector

Significant contribution to Particle Physics, Astrophysics and Cosmology

LEGEND concept

 The goal of the LEGEND (<u>Large Enriched Germanium Experiment for</u> <u>N</u>eutrinoless Doube Beta <u>Decay</u>) Collaboration is to design, construct, and field LEGEND-1000, a ton-scale experiment:

"The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results".

• The LEGEND collaboration was formed in 2016 by a merger of the MAJORANA and GERDA collaborations, along with several new institutions

GERDA: best background, LAr shield/instrumentation

Neutrino Physics

Double β decay

LEGEND

Summary

LEGEND-200

Majorana: low noise, high radiopurity electronics, low threshold

LEGEND-200/1000

LEGEND overview

 $T_{1/2}$ (0v $\beta\beta$) ~ 10²⁸ yr \rightarrow less than one decay per year per ton of material

- 10 t×yr of data is needed to get a few counts (1 t, 10 yr of data taking)
- very good signal-to-background ratio to get statistical significance
 - \rightarrow extremely low background (~20 times lower compared to GERDA)
 - \rightarrow best possible energy resolution (~2.5 keV at Q_{BB})

Neutrino Physics

LEGEND

Summary

LEGEND-200

Our background goal is the red line on the plot, 0.025 counts/(FWHM×t×yr), "quasi-background-free" operation: ≤ 1 background event expected in a 4σ ROI for 10 t×yr exposure

LEGEND overview

1000 kg of enriched Ge detectors (92% ⁷⁶Ge)

Neutrino Physics				
Double β decay				
LEGEND				
LEGEND-200				

Summary

- HPGe detectors: 2.6 kg average mass
- Mounted in "strings" using components made from electro-formed Cu and scintillating plastic, PEN
- Underground/atmospheric Ar

- Fiber-curtains for LAr instrumentation
- Underground site to shield from cosmic rays: INFN-LNGS in Italy

LEGEND-200

- 200 kg of HP^{enr}Ge in existing GERDA infrastructure at LNGS, Italy
- Anticipated exposure: 1 t×yr
- Background goal: $3 \times$ reduction w.r.t GERDA, BI $< 2 \times 10^{-4}$ cts/(keV \times kg \times yr): quasi-background free operation for unambiguous discovery of the $0\nu\beta\beta$ decay up to 10^{27} yr
 - Improved VFE electronics
 - Improved PSD methods
 - Improved LAr instrumentation
- Taking physics data since March 2023
- 142 kg of enrGe

L-200 in Hall A of LNGS

PAiP-2025 conference "Particle Astrophysics in Poland", 20- 21.02.2025, Warsaw, Poland

Double β decay

Neutrino Physics

LEGEND-200

LEGEND-200 detectors

- p-type detectors: insensitive to alpha decays (²¹⁰Po) on n+ contact
- Large-mass semi-coaxial detectors
- Small p+ contact: event topology discrimination (PSD)
- Large-mass ICPC detectors (60 % of total detector inventory): lower backgrounds with respect to BEGe/PPC
- Proven long-term stable operation in liquid argon

L. Pertoldi, Neutrino 2024

PAiP-2025 conference "Particle Astrophysics in Poland", 20- 21.02.2025, Warsaw, Poland

Neutrino Physics Double β decay LEGEND

```
LEGEND-200
```

LEGEND-200 LAr instrumentation

Neutrino Physics

Double β decay

LEGEND

LEGEND-200

Summary

LEGEND-200 LAr instrumentation

LEGEND

Summary

LEGEND-200

PAiP-2025 conference "Particle Astrophysics in Poland", 20- 21.02.2025, Warsaw, Poland

LEGEND-200 Result

Neutrino 2024 data set (48.3 kg ×yr):

or Neutrinoless BB Deca

Neutrino Physics

Double β decay

LEGEND

Summary

LEGEND-200

- BI: $(5.3 \pm 2.2) \times 10^{-4} \text{ cts/(keV \times kg \times yr)}$

- GERDA, MAJORANA and L-200 combined limit:

 $\begin{array}{l} T_{1/2} \left(0\nu\beta\beta \right) > 1.9 \times 10^{26} \ yr \ (sensitivity: 2.8 \times 10^{26} \ yr) \ at \ 90\% \ C.L. \\ - \ m_{\beta\beta} \leq (80-182) \ meV \end{array}$

Summary

- $0\nu\beta\beta$ decay: nuclear physics but with very important contribution to neutrino physics
- Ge-based experiments have high discovery potential (low intrinsic background, high efficiency, excellent energy resolution)
- LEGEND next generation experiment for $T_{1/2}^{0v} \sim 10^{28}$ yr and exploration of the inverted neutrino mass hierarchy
- Funding for LEGEND-1000 sought from U.S. (DOE and NSF) and from Europe (several European institutions contribute already)
- Pre-Conceptual Design Report available: arXiv: 2017.11462
- First data from LEGEND-1000 expected in 2030 (10 t×yr of data anticipated), detector under construction
- First phase, L-200, aims for $T_{1/2}^{0v} \sim 10^{27}$ yr with 200 kg of ^{enr}Ge
- First data from L-200 released for Neutrino 2024: $T_{1/2} (0\nu\beta\beta) > 1.9 \times 10^{26} \text{ yr}$
- Next portion of data un-blinded 2 weeks ago, paper in preparation

The Polish National Science Center and the Polish Ministry of Science and Higher Education are acknowledged for their support of the LEGEND Experiment

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Neutrino Physics Double β decay

LEGEND

LEGEND-200

0νββ history

50 years of $0\nu\beta\beta$ decay searches with ⁷⁶Ge

- Impressive technological progress and scientific production
- A new exciting era begins now with **LEGEND**

0vββ experiments

Experiments searching for the 0\nu\beta\beta decay

Experiment	Status	Isotope	$T_{1/2}^{0 u} \; [{ m yr}]$	$m_{etaeta} { m [meV]}$
GERDA	Completed	76 Ge	$1.8 imes10^{26}$	79—180
MAJORANA	Completed	76 Ge	$\mathbf{8.5 imes 10^{25}}$	113 - 269
LEGEND-200	Taking Data	76 Ge	$1.5 imes 10^{27}$	34 - 78
LEGEND-1000	Proposed	76 Ge	$8.5 imes10^{28}$	9 - 21
$\text{CDEX-}300\nu$	Proposed	76 Ge	$3.3 imes 10^{27}$	18 - 43
KamLAND-Zen	Taking Data	136 Xe	$2.3 imes \mathbf{10^{26}}$	36 - 156
EXO-200	Completed	136 Xe	$3.5 imes \mathbf{10^{25}}$	93—286
nEXO	Proposed	136 Xe	$1.3 imes 10^{28}$	6.1 - 27
NEXT-100	Construction	136 Xe	$7.0 imes10^{25}$	66 - 281
CUORE	Taking Data	$^{130}\mathrm{Te}$	$3.8 imes \mathbf{10^{25}}$	70 - 240
SNO+	Construction	$^{130}\mathrm{Te}$	$2.1 imes 10^{26}$	37 - 89
AMoRE-I	Completed	^{100}Mo	$3.0 imes 10^{24}$	210 - 350
AMoRE-II	Proposed	^{100}Mo	$5.0 imes10^{26}$	17 - 29
CUPID-Mo	Completed	^{100}Mo	$\mathbf{1.8 imes 10^{24}}$	280 - 490
CUPID	Proposed	^{100}Mo	$1.5 imes 10^{27}$	10 - 17
CUPID-0	Completed	82 Se	$f 4.6 imes 10^{f 24}$	263 - 545
SuperNEMO-D	Construction	82 Se	$4.0 imes 10^{24}$	260 - 500
CANDLES-III	Taking data	48 Ca	$5.6 imes \mathbf{10^{22}}$	2900 - 1600