Small Extensive Air Shower detector array – measurements and estimation

Jerzy Pryga¹

Under supervision of Krzysztof Woźniak² and Łukasz Bibrzycki³

¹University of the National Education Commission in Cracow, ²Institute of Nuclear Physics PAS, ³AGH University of Krakow

PAiP 21.02.25

Basic CREDO equipment

CREDC: THE QUEST FOR THE UNEXPECTED

CREDO (Cosmic-Ray Extremely Distributed Observatory) collaboration searching for global cosmic ray related phenomena i.e. Cosmic-Ray Ensembles (CRE) [Homola et al., 2020].

Current main source of data: smartphones

Perfect Extensive Air Shower (EAS) detector for CREDO:

- Very good temporal resolution (< µs).</p>
- Measures atmospheric CR flux with good statistics.
- Distinguishes EAS from single particles.
- Ollects data remotely.
- Works continuously for years.
- Inexpensive and easy to manufacture in large number.

< ロ > < 同 > < 回 > <

Basic CREDO equipment

CRED : THE QUEST FOR THE UNEXPECTED

CREDO (Cosmic-Ray Extremely Distributed Observatory) collaboration searching for global cosmic ray related phenomena i.e. Cosmic-Ray Ensembles (CRE) [Homola et al., 2020].

Current main source of data: smartphones

Realistic EAS detector for CREDO:

- OK temporal resolution ($\approx 100 \ \mu s$ should be possible).
- Measures atmospheric CR flux with good statistics.
- Distinguishes EAS from single particles.
- Ollects data remotely.
- Works continuously for years.
- Inexpensive (1000-2000 EUR) and easy to manufacture in large number.

< ロ > < 同 > < 回 > < 回 >

Constructed prototype

Small array of $5 \times 5 \times 1$ cm scintillator detectors [Axani, Frankiewicz, and Conrad, 2018]:

- 8 devices in a flat coincidence system.
- 200 ns coincidence time window.
- Data collected on SD card.

Measurement - angular distribution

Measurement 1:

Relationship between muon flux I_0 [1/h] and zenith angle θ (two detectors in a top-bottom coincidence setup).

Estimation of expected measurement results

Estimation of expected measurement results

Measurement – detection of EAS

Measurement 2:

Array in a flat coincidence setup with various shieldings.

▲ 伊 ▶ ▲ 国 ▶

Measurement and estimation from simulations

- Measurement results fall between two extreme estimations.

 Excess of k = 2 coincidences (probably due to interactions in the shielding).

Energy of detected EAS – estimation from simulations

– Coincidence events with k > 2 is a sign of an EAS with energy in the $200 - 10^6$ TeV range.

- Higher energy cosmic-ray particles are too rare to be undoubtedly identified in this setup.

	rzy Pryga	Small detector
--	-----------	----------------

Differences between devices

- Different colours represents different scintillators.

Conclusions

Summary:

- **Q** Events with 3 or more detectors triggered are caused by EAS.
- Significant fraction of double coincidence events can be caused by a single cosmic-ray particle interacting in the enclosure and producing more particles.
- Improvements in the design of detectors to make their efficiency better and more uniform are still possible.

Primary CR spectrum

Aartsen et al., 2013; Workman et al., 2022; Grieder, 2001; Maurin et al., 2023

Primary CR spectrum

Image: A math a math

э

12 / 15

∍ →

Definition of symbols

Symbol	Definition
$\rho_{\it part}$	Density of particles
Е	Energy of primary cosmic-ray particle
θ	Zenith angle
ϕ	Azimuthal angle
r	Distance from shower axis
N	Number of particles from EAS reaching ground
h	Altitude of observation
$\eta_{\it part}$	Efficiency of the detector for certain type of particles
р	Momentum of particles from EAS
Q(n,k)	Probability of triggering k out of n detectors in an array
j	Intensity of primary CR
j ₀	Constant specific for each particle type of primary CR
γ	Spectral index

Parameters of estimation

Parameter	Value
η_{mes} – measured	Obtained from $I(\theta)$ measurement: 20 - 30%
$\eta_{\mu}(p)$ – simulated	100% for the whole p range
$\eta_e(p)$ – simulated	Rising quickly from 0 to 100% around $p = p_{th}$
$\eta_{\gamma}(p)$ – simulated	Between 3% and 20% depending on p and $ heta$

Parameter	Minimal estimation	Maximal estimation
$\eta_{\mu}(p)$	20%	30%
$\eta_e(p)$	20% for $p_{th} \ge 0.03$ GeV	30% for $p_{th} \ge 0.007 \text{ GeV}$
$\eta_{\gamma}(p)$	$20\% \times 3\% = 0.6\%$	$30\% \times 20\% = 6\%$
j(E)	Steep rigidity cut-off	No cut-off
Duty cycle	90%	95%

Proportions of efficiency for different detectors in the array: 1, 0.96, 0.69, 0.92, 0.52, 0.73, 0.76, 0.75

Bibliography I

- Aartsen, MG et al. (2013). "Measurement of the cosmic ray energy spectrum with IceTop-73". In: *Physical Review D* 88.4, p. 042004.
- Axani, SN, K Frankiewicz, and JM Conrad (2018). "CosmicWatch: The Desktop Muon Detector". In: J. Instrum 13, p. 03.
- Grieder, Peter KF (2001). Cosmic rays at Earth. Elsevier. Chap. 5.4.7, pp. 806,837.
- Homola, Piotr et al. (2020). "Cosmic-ray extremely distributed observatory". In: *Symmetry* 12.11, p. 1835.
- Maurin, David et al. (Oct. 2023). "A cosmic-ray database update: CRDB v4.1". In: The European Physical Journal C 83.10. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-023-12092-8. URL: http://dx.doi.org/10.1140/epjc/s10052-023-12092-8.
- Workman, R. L. et al. (2022). "Review of Particle Physics". In: *PTEP* 2022, p. 083C01. DOI: 10.1093/ptep/ptac097.

イロト イポト イヨト イヨト

15/15