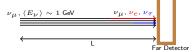
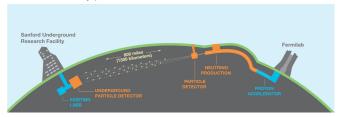
Deep learning for neutrino interactions with nuclei

Krzysztof M. Graczyk

Institute for Theoretical Physics *Neutrino Physics Division* - NuWro *Group*


https://kgraczyk.github.io/laip/

February 19, 2025

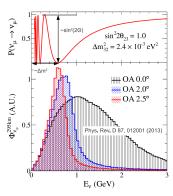


Primary Motivation

- neutrinos ν_e , ν_μ , ν_τ ,..., fundamental particles
 - weakly interacting, neutral, difficult to detect...
- neutrino oscillations:

- ullet CP-violation phase o the Matter-Antimatter asymmetry
- · Mass hierarchy problem

- There is a huge experimental and theoretical effort in studying neutrino properties.
- Deep Underground Neutrino Experiment (DUNE), HyperKamiokande and T2K experiments


4 11 3 4 4 4 5 3 4 5 4

ν -nuclei interactions

- Accelerator neutrinos:
- $\begin{array}{c} \rightarrow \ 1 \ \text{GeV neutrinos interact with Oxygen} \\ & \text{(HyperKamiokande), Argon (DUNE),} \\ & \dots \end{array}$
 - From a precision of about 20-30% in our knowledge of ν -nucleus scattering cross sections to a percent-level precision.
 - \bullet To study oscillations, we must determine the energy of incoming $\nu s.$

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 \theta_{23} \left(\frac{\Delta m_{32}^2 L}{4E_{\nu}} \right)$$

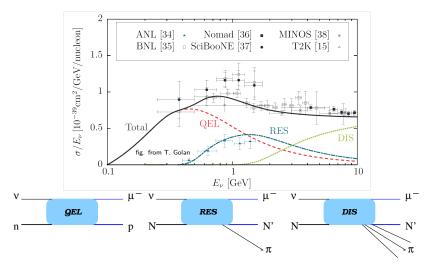
• neutrino energy, E_{ν} , given by some distribution, one must reconstruct energy event-by-event

 Theory meets experiment: a Monte Carlo generator for neutrino-nucleus interaction events!

NuWro

- Monte Carlo Generator of neutrino interactions, written in C++
- Developed since 2005 at the University of Wroclaw by Jan Sobczyk et al.)
- Optimized for neutrino energy from $\sim 100~\text{MeV}$ to $\sim 20~\text{GeV}$
- Handle all kinds of targets, and neutrino fluxes, equipped with detector interface
- * open source code, repository: https://github.com/NuWro/nuwro

 For given initial neutrino generates final products of interaction


figs. from T. Golan

4/18

ν -Nucleon scattering

 Neutrino energy reconstructed mainly from the analysis of QuasiElastic (QE) scattering events!

ν -nucleus scattering

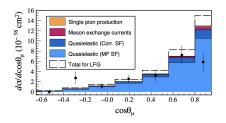
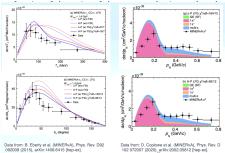
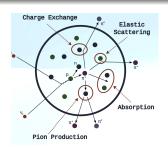
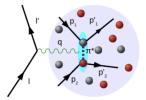
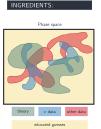





FIG. 2. MicroBooNE CC1 $p0\pi$ differential cross section as

Figs. from Banerjee, Ankowski, Graczyk, Kowal, Prasad, Sobczyk, Phys.Rev.D 109 (2024) 073004

figs. from J. Sobczyk

- We need to simulate ν -Nucleus in realistic conditions
 - → Monte Carlo Generator of Neutrino Interactions


6/18

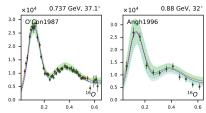
NuWro: How to built the MC generator of νA scattering events

fig. from T. Golan

figs. T. Golan

Goals of the Monte Carlo Generator

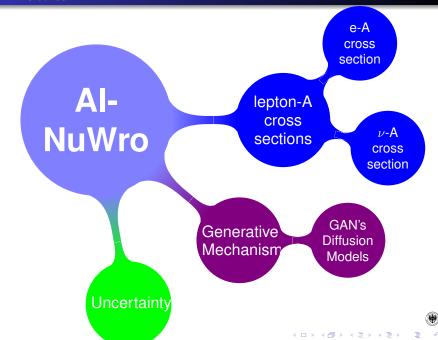
- Combine various theoretical/phenomenological models with different data types in different kinematic regimes and reaction scenarios.
- Obtain a system that automatically and objectively updates its knowledge of physics when new data and theoretical constraints are delivered



ν 's vs. electron

ν -Physics vs. e-Physics

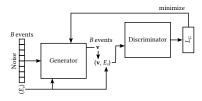
- ullet Scarce u-scattering data \leftrightarrow informative data for e-nucleus scattering
- Deficiencies in theoretical description of ν-nucleus interactions ↔ quite well understood e-nucleus scattering physics
- Similarities between electron and neutrino interactions with nuclear targets
 - vector-axial contribution, the same nuclear physics

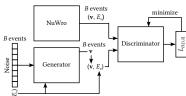


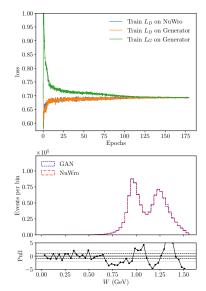
QE, dip, RES peaks are clearly distinguished! Not the case in neutrino interactions!

Goals

- ullet Transfer a knowledge of nuclear physics from e-scattering to u-scattering
- Extrapolate the knowledge of physics from one kinematic domain to the other Can deep neural networks learn physics?




u_{μ} -carbon collisions with Generative adversarial network (GAN)


- * Bonilla, Graczyk, et al., arxiv:2503.xxxxx
- Optimize two models:

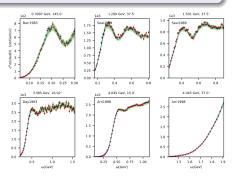
Generator(E_{ν},\dots)

Discriminator(Muon kinematics)

E=1 GeV, inclusive scattering

Deep Neural Networks for Physics

- GANs mimic reality by accumulating physics knowledge.
- Use as a pre-trained model for realistic tuning!
- Utilize the concept of representation learning.



STEP I: Teach deep neural networks nuclear physics:

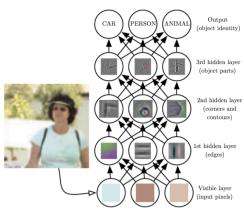
 Use electron-carbon scattering data: Kowal et al., Phys.Rev.C110 (2024) 2, 025501

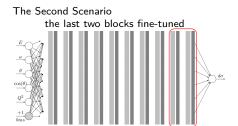
Physic-guided Neural Network (PgNN)

training, test data points

Representation learning and transfer learning

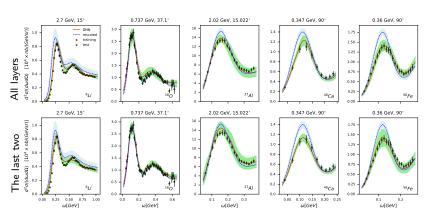
STEP II: Did neural networks learn nuclear physics? If yes, let us take profit from that




fig from: Deep Learning, Goodfellow, Bengio and Courville

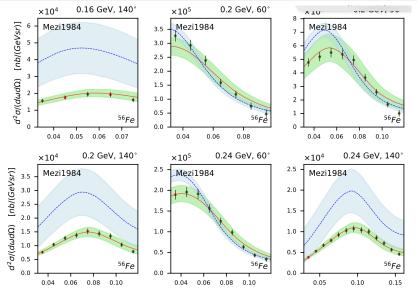
- fundamental concept of deep learning: representation learning
- Transfer learning known in psychology and education. It refers to the ability of a person who has learned skills in one specific field to easily acquire skills needed in related areas of life.

Transfer learning for electron scattering


The First Scenario all layers fine-tuned

- Consider electron scattering on lithium, oxygen, aluminium, calcium and iron
- For each target consider its own fine-tuning procedure
- To tests transfer learning minimize as much as possible training dataset:
- training:test = 1:9
- Graczyk, Kowal, Ankowski, Banerjee, Bonilla, Prasad, Sobczyk, arXiv:2408.09936 Electron-nucleus cross sections from transfer learning

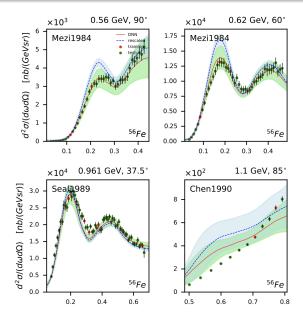
Fine-Tuning: training (10%), test (90%)



rescaled = (A/12) carbon cross section

15/18

training (10%), test (90%): Iron, all layers fine-tuned


Note that relative normalization parameters (due to nor. sys. uncert.) were taken into account

4 D > 4 A > 4 B > 4 B >

Summary

- \bullet We focus on developing neutrino-nucleus scattering models and implement them in $\rm NuWRo$.
- We have been developing Al-driven models for neutrino-nucleus scattering. This
 method is promising and broadly applicable.

