The Giant Radio Array for Neutrino Detection – experimental status and plans

Lech Wiktor Piotrowski

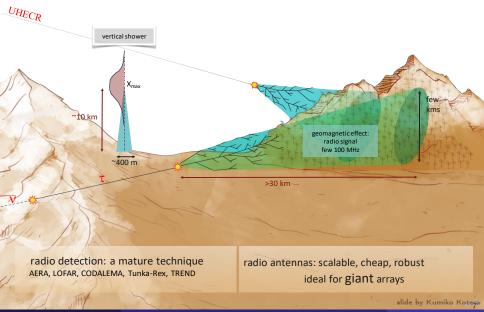
University of Warsaw

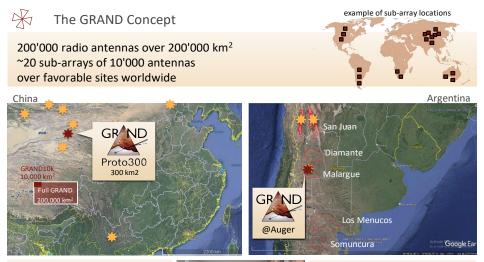
Particle Astrophysics in Poland 20.11.2025, Warsaw, Poland

How to find UHECRs sources?

Problem

So many years, no UHECRs sources identified


Solutions


- Increase the atmosphere coverage
 - Use a different experimental idea (eg. observations from the orbit with JEM-EUSO/Poemma)
 - Use different (more efficient and cheaper) detection methods to cover more ground
- Reduce the angular uncertainty
 - Observe UHE neutrinos from UHECR (\sim 5% of the primary energy) that travel in straight line from the source

Giant Radio Array for Neutrino Detection – GRAND – aims at both increasing the atmosphere coverage and observing the UHE neutrinos

Radio detection of ultra-high-energy air-showers in GRAND

- ✓ Radio environment: radio quiet
- ✓ Topography: mountains/slopes
- \checkmark Access, Installation and Maintenance
- ✓ Other issues (e.g., political)

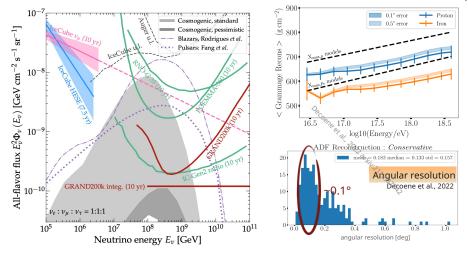
several excellent sites identified in Argentina & China (~100 measurements,14 campaigns)

slide by Kumiko Kozesa

PAiP-2025

GRAND science case

- UHE neutrinos
 - point sources
 - cosmogenic flux
- UHECR
 - 20 times the exposure of Auger
 - 1 yr: GRAND 6400, Auger 320 events $> 10^{19.5}$ eV, GRAND 150, Auger 8 events $> 10^{20}$ eV
 - transition from galactic to extragalactic, north-south anisotropy
 - hadronic physics
- neutrino physics (cross-sections, flavour ratios)
- UHE gamma-rays observations/competitive limits
- Radio astronomy
 - almost full-sky survey
 - FRBs and Giant Pulses


A staged approach with self-standing pathfinders

	Prototyping	GRAND10k	GRAND200k
	2025	>2028	203X
Goals	autonomous radio detection of very inclined air-showers cosmic rays 10 ^{16.5-18} eV • Galactic/extragalactic transition • muon problem • radii transitot	1st GRAND sub-arrays (x2) • discovery of EeV neutrinos for optimistic fluxes • radio transients (FRBs!)	sensitive all-sky detector 1st EeV neutrino detection and/or neutrino astronomy!
Setup	 radio transients GRAND@Nançay: 4 antennas for trigger testing GRAND@Auger: 10 antennas for cross-calibration GRANDProto300: 300 HorizonAntennas over 200 km² 	• 10,000 radio antennas over 10,000 km²	 200,000 antennas over 200,000 km² 20 sub-arrays of 10k antennas on different continents
Budget	2 M€ 100 antennas produced funded by China + ANR PRCI NUTRIG (France) + Radboud University	13 M€ 1500€/unit	300M€ in total _{500€/unit} to be divided between participating countries
	Lech Wiktor Piotrowski	GRAND	slide by Kumiko Koţera PAiP-2025

Lech Wiktor Piotrowski

Simulated performances

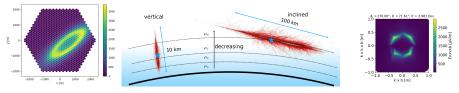
GRAND Science & Design, GRAND Coll.

- GRAND full sensitivity to neutrinos (E>10¹⁷ eV) ~4 x 10^{-10} GeV cm⁻² s⁻¹ sr⁻¹
- Angular resolution ~0.1° for GP300 & GRAND
- Energy resolution < 10% on air-showers for GP300 & GRAND B. Lago & Rio GRAND team
- X_{max} resolution < 40 g/cm² for E>10¹⁷ eV (comparable to other methods) Decome et al., 2022

Decoene et al., 2022

slide by Kumiko Kotera

Status for existing experiments:


- Antarctic (super low-noise) experiments, like ANITA, trigger on radio signal
- All non-antarctic experiments (AERA, LOFAR, etc.) are externally triggered on regular basis (particle detectors)
- But past TREND experiment (a precursor to GRAND) managed to register UHECR with a radio trigger
- To trigger on radio signal, we need:
 - (intially) Very radio-quiet environment
 - Optimised antennas
 - Electronics and software capable of 10^8 rejection rate
 - Motivation we can not do it differently

TREND showed that it can be done, GRAND needs to (vastly) optimise it

Challenges: Very inclined EAS reconstruction

How to find primary particle's direction, energy and mass (Xmax)?

- Mature methods for radio for... vertical showers
- Current experiments' sensitivity to very inclined shower is very low
- For very inclined showers terra incognita, but we can start with same methods, and add "our" features

- Strong, accessible Cherenkov-like ring in our frequency range
- \bullet Asymmetric atmosphere for the shower \rightarrow synchrotron effect \rightarrow cloverleaf pattern
- Still studied in simulations, several reconstruction (conventional and ML) methods under development

- How to deploy 200,000 antennas
- How to put them on slopes
- Power/connectivity
- How to maintain a huge site
- Finding sites
- Financing...

Hardware

 \sim 100 detector units ready, most in use:

- A butterfly antenna
 - 3 arms: x,y: 2×65 cm, z: 65 cm
 - On a 3.5 m pole

5 detection units tests at Xi'An (by Zheng PengFei)

Hardware

 \sim 100 detector units ready, most in use:

- A butterfly antenna
 - 3 arms: x,y: 2×65 cm, z: 65 cm
 - On a 3.5 m pole
- Front-end electronic:
 - 30-230 MHz analogue filtering (to be used: 50-200 MHz)
 - 500 MS/s digitisation
 - Xilinx Zync MPSoC (FPGA+2 CPUs+2 RT CPUs)
 - Bullet WiFi data transfer

Hardware

 \sim 100 detector units ready, most in use:

- A butterfly antenna
 - 3 arms: x,y: 2×65 cm, z: 65 cm
 - On a 3.5 m pole
- Front-end electronic:
 - 30-230 MHz analogue filtering (to be used: 50-200 MHz)
 - 500 MS/s digitisation
 - Xilinx Zync MPSoC (FPGA+2 CPUs+2 RT CPUs)
 - Bullet WiFi data transfer
- LNA, VGA, solar panels, batteries, charge converters, custom filters, etc. ← very important

GRAND: software/simulations/other status

Software

Data format:

- raw/sim → ROOT TTrees
- Status: fully embraced for sims and data from prototypes

Data analysis:

- GRANDlib Python + C(++) speedups/alternatives
- Status:
 - Preliminary energy, direction and Xmax reconstruction with helpf of GRANDlib
 - · Own topography module
 - · Full electronic chain
 - Know-python-only data access interfaces (data oriented and analysis oriented)

Other

Carbon footprint:

- Estimated in 10.1016/j.astropartphys.2021.102587
- GRAND Green Policy validated

Simulations

ZHAireS:

For big studies, interpolation used (M. Tueros and A. Zilles 2021
 JINST 16 P02031)

CORSIKA7/CoREAS:

Generated similar library to ZHAireS one for GP300, for comparison

Radio-morphing:

 (A. Zilles et al., 10.1016/j.astropartphys.2019.06.00⁷)
 Good agreement with microscopic simulations
 New scaling laws and new interpolation → better accuracy of the peak time and amplitude of the interpolated pulse (Chiche et al., PoS(ICRC2021)194)

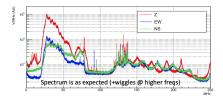
MGMR3D:

(O. Scholten et al., Phys. Rev. D 97, 023005) • Some effort on adaptation from LOFAR to GRAND, on hold

Lech Wiktor Piotrowski

GRAND@Nancey

• 4 antennas deployed in Nancay Radio Observatory, France

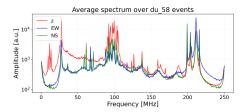

GRAND@Nancey

- 4 antennas deployed in Nancay Radio Observatory, France
- Easy access (for Europeans)

GRAND@Nancey

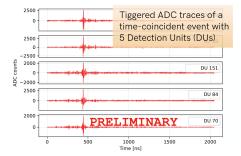
- 4 antennas deployed in Nancay Radio Observatory, France
- Easy access (for Europeans)
- Hardware tests only with easy access, too noisy for EAS

GRAND@Auger

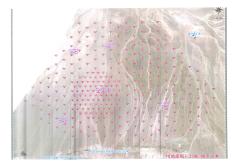

- 10 antennas at the Auger site in Malargue, Argentina (by Radboud University and Universidade Federal do Rio de Janeiro)
- Attached to AERA infrastructure

9/14

GRAND@Auger


- 10 antennas at the Auger site in Malargue, Argentina (by Radboud University and Universidade Federal do Rio de Janeiro)
- Attached to AERA infrastructure
- Hardware tests

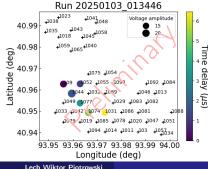
9/14


GRAND@Auger

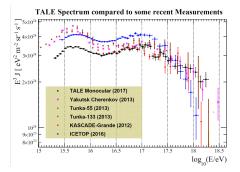
- 10 antennas at the Auger site in Malargue, Argentina (by Radboud University and Universidade Federal do Rio de Janeiro)
- Attached to AERA infrastructure
- Hardware tests
- Self-triggering, cross calibration with Auger
- Data transfer and remote access possible through 4G

9/14

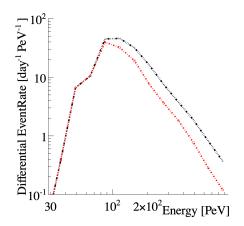
• 300 antennas to be deployed in Xiao Dushan, China by \sim 2026 (by Xidian University and Purple Mountain Observatory)


- 300 antennas to be deployed in Xiao Dushan, China by \sim 2026 (by Xidian University and Purple Mountain Observatory)
- Currently deployed: 48 antennas

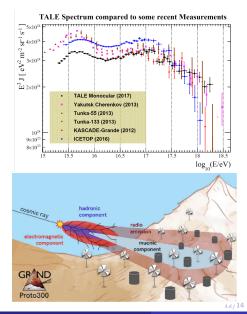
- 300 antennas to be deployed in Xiao Dushan, China by \sim 2026 (by Xidian University and Purple Mountain Observatory)
- Currently deployed: 48 antennas
- Hardware development
- Gathered many bias data and single-antenna triggers

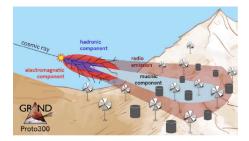

Very preliminary UHECR candidates in GRANDProto300

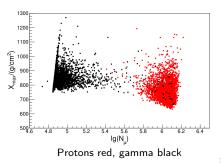
- GP300 is still in commissioning phase ۲
- ۲ Self triggering since late Autumn 2024
- The search for UHECRs in the data has ۲ just started
- A few promising events detected, not ۰ associated with known sources of bg
- First CR candidates? Very preliminary results so far - more study needed!
- ۲ No reconstruction/statistics yet



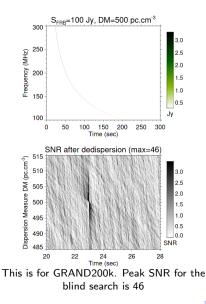
Run 20250103 013446 DU 109 DU 1053 DU 1044 -21 DU 1077 DU 1074 DU 1031 Channel : -10 Time [us]


• GP300 will be crucial in $10^{16.5} - 10^{18}$ eV range in the north


- GP300 will be crucial in $10^{16.5} 10^{18}$ eV range in the north
- Discovery/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)



- GP300 will be crucial in $10^{16.5} 10^{18}$ eV range in the north
- Discovery/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)
- With muon detectors:
 - study of transition between the Galactic and extra-galactic cosmic rays



- GP300 will be crucial in $10^{16.5} 10^{18}$ eV range in the north
- Discovery/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)
- With muon detectors:
 - study of transition between the Galactic and extra-galactic cosmic rays
 - detection/limits on UHE gamma rays

- GP300 will be crucial in $10^{16.5} 10^{18}$ eV range in the north
- Discovery/constraining of low-energy large-scale Northern-Hemisphere anisotropy of size 0.01 (constraining existence of nearby UHECR sources)
- With muon detectors:
 - study of transition between the Galactic and extra-galactic cosmic rays
 - detection/limits on UHE gamma rays
- Radioastronomy: FRBs, giant pulses

GRAND today

 15 countries: Argentina, Belgium, Brazil, China, Czech Republic, Denmark, France, Germany, Greece, Japan, Netherlands, Norway, Spain, Poland, USA
 125 members

The Polish contribution

- X_{max} reconstruction
- Software
- Offline event selection

Please see the X_{max} talk by Washington Carvalho tomorrow, at 14:30!

GRAND meeting in Nanjing, 2024

Summary

The origin of cosmic rays of highest energies still remains a mystery

- Current on-ground experiments (Auger, TA) have small chances of finding it
- GRAND aims to solve it with:
 - A huge exposure (20 times that of Auger in UHECR)
 - covering vast amounts of ground with cheap, low-density radio antennas
 - observing very inclined EAS
 - Detection of UHE neutrinos, vastly reducing direction uncertainty

GRAND status:

- 3 small prototypes started data gathering in 2023
- The first 48 antennas of the GRANDProto300 self-triggerging in coincidence since Autumn 2024
- \bullet Very preliminary UHECR candidates detected, giving hope for UHECR science in $10^{16.5}-10^{18}$ eV region
- $\bullet\,$ With 10,000 antennas in \sim 2028 a chance for first UHE neutrinos discovery
- With 200,000 antennas in the 2030's a chance for UHE neutrinos astronomy
- GRAND appears in several roadmaps (APPEC, Snowmass 2022, ESPP 2020, etc.)

http://grand-observatory.org