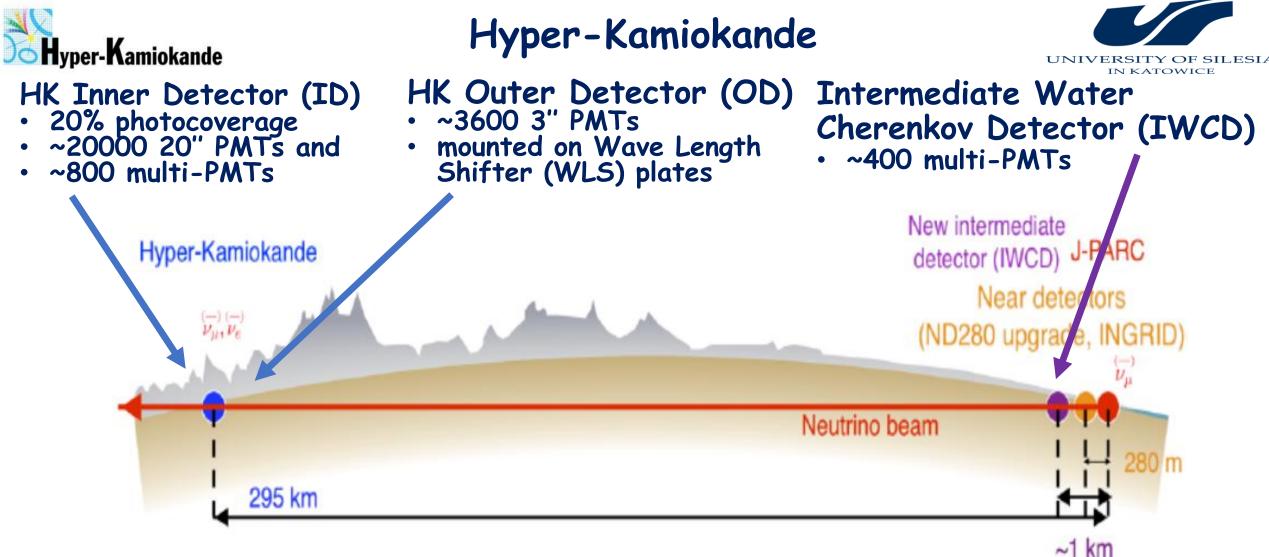


The Hyper-Kamiokande experiment

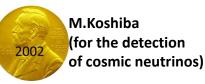
Jan Kisiel Institute of Physics, University of Silesia in Katowice, Poland



Outline

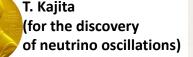
• Hyper-Kamiokande project:

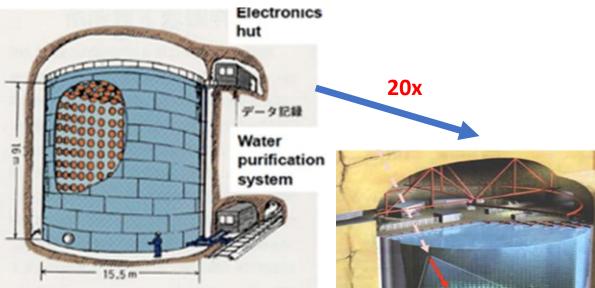
- (1) far detector,
- (2) near detectors,
- (3) J-PARC neutrino beam,
- (4) Intermediate Water Cherenkov Detector (IWCD)
- Hyper-Kamiokande: physics program
- Hyper-Kamiokande: timeline
- Polish contribution to Hyper-Kamiokande experiment
- Outlook

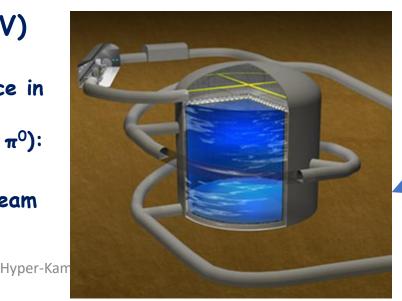


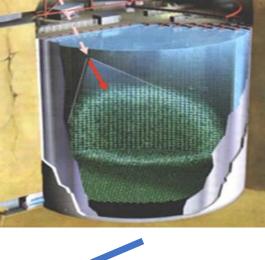
Based on Japan's successes with water Cherenkov exp.

HK-project: 1) new far water Cherenkov detector (8.4 x Super-Kamiokande) upgraded J-PARC neutrino beam : 0.8 MW (now) \rightarrow 1.3 MW) 2) upgraded ND280 detector (new Super-FGD and High Angle TPCs) 3) new Intermediate Water Cherenkov Detector (IWCD) 4)


Water Cherenkov detector development (in Japan) **36** Hyper-Kamiokande


- Kamiokande (1983-1996), 3 kton, 20% PMT coverage:
 - SN1987a neutrinos,
 - v_{atm} deficit,


- Super-Kamiokande (1996-...), 50 (22.5 FV) kton, 40% PMT coverage:
 - v_{atm} and v_{solar} oscillations,
 - proton decay,
 - far detector for T2K exp.,

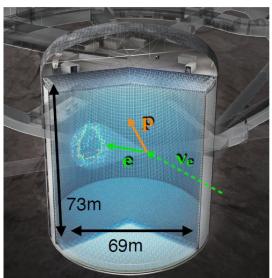


- Hyper-Kamiokande (2027-...), 258 (188 FV) kton, 20% PMT coverage:
 - CP violation: elucidation of the matter dominance in the Universe
 - proton decay (most sensitive channel: $p \rightarrow e^+ + \pi^0$):
 - neutrino oscillation (beam, atmospheric, solar)
 - neutrino mass hierarchy (combined fit of the beam • and atmospheric data),
 - neutrino astrophysics (supernova, ...), 20.02.2025

8.4x

Hyper-Kamiokande: far detector site

【2023/07/13】 Cavern for water purification system (~1/2 of Super-K)


Kamioka: New main building completed

- Water Cherenkov far detector:
- fiducial volume: ~188 kton, ~8.4 Super-K;
- the tank bottom: ~8 bars of water pressure.

• Main cavern: the largest Hyper-Kamiokande ever human-built cavern,

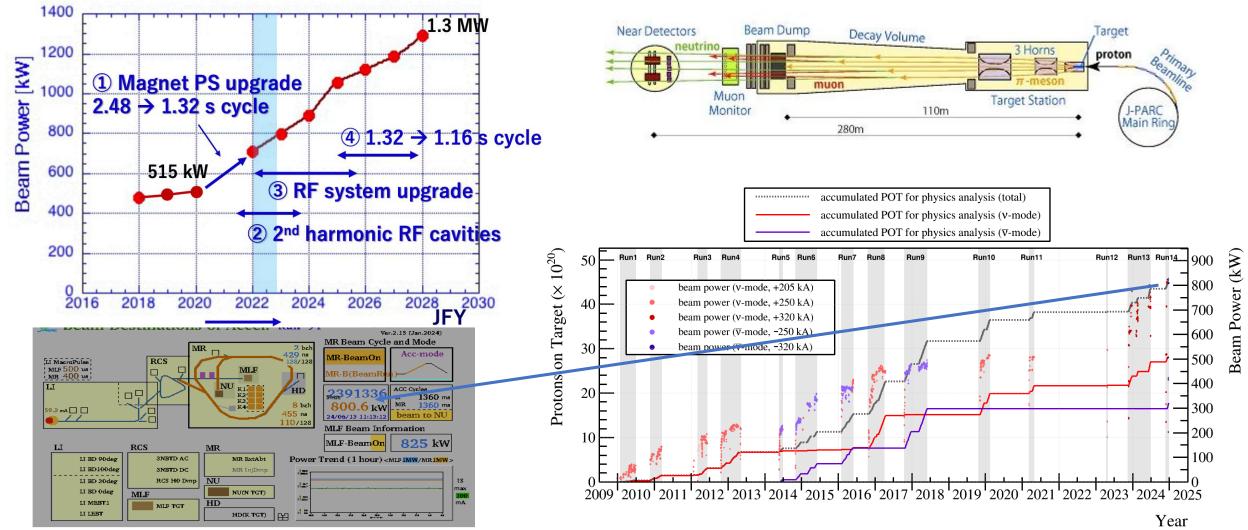
Hyper-Kamiokande far detector

Measurement of interaction vertex, particle direction and energy; e/µ PID with 20k 20" improved PMTs + 800 mPMTs (inner detector) and 3600 3" PMTs mounted at WLS plates (outer detector).

900 electronic modules in underwater pressure vessels (~600 for 20" PMTs only; ~300 hybrid (20" and 3" PMTs)), unlike in SK to avoid signal deterioration by long cables.

Multi-PMT (mPMT) modules: 19x3" PMTs with electronics inside a pressure resistant vessel to improve the Cherenkov rings reconstructions in the detector corners.

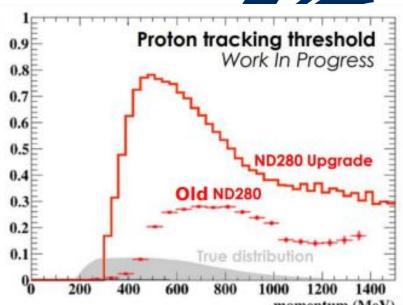
Outer detector: 3" PMT attached to wavelength shifting plate to veto cosmic-ray muons. HK 20" PMTs: twice better performance (photodetection efficiency, charge and time resolutions) than SK PMTs; confirmed with 136 installed in the SK during 2018 refurbishment; data for long term stability tests in real HK conditions.

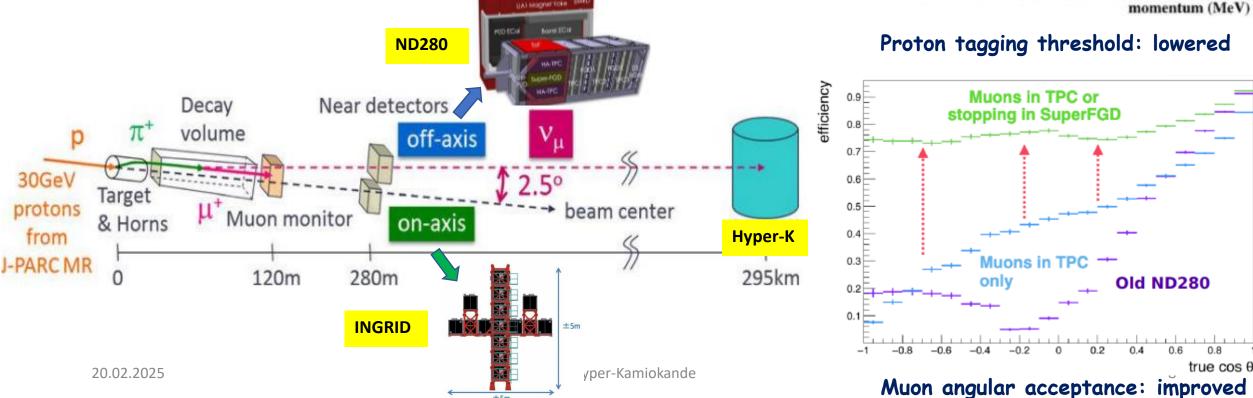

~12000 (out of 20000) PMTs delivered,

each for 100 PMTs) and Hamamatsu

Screening/signal check at Kamioka (2 dark rooms,

Hyper-Kamiokande Upgrade of J-PARC proton beam intensity

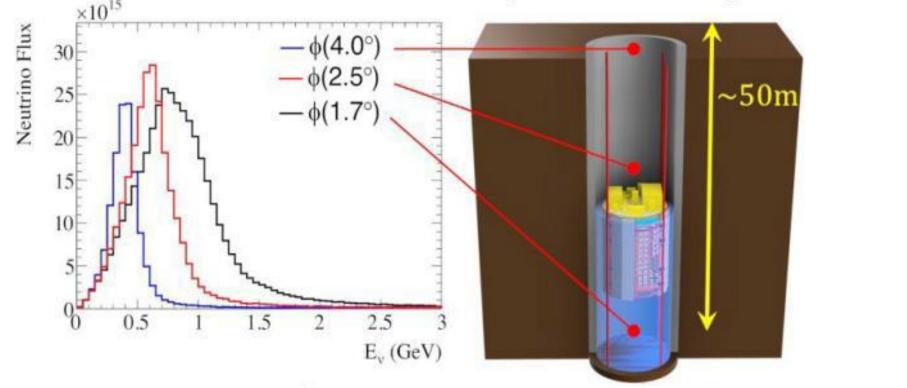

- Continuous increase: from 0.5 MW (2019) to 1.3 MW (2028); already 0.8 MW in 2024.
- Cycle time: 2.48 s \rightarrow 1.16 s; protons per pulse: 2.6x10¹⁴ \rightarrow 3.3x10¹⁴; beam optics improvement.
- J-PARC neutrino beam will be used by T2K until the start of HK.

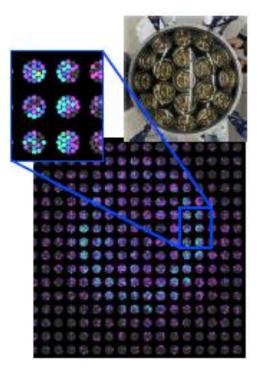


Whyper-Kamiokande The near detectors at 280m

Near detectors: used to understand neutrino beam/interactions (before oscillations) and control systematics

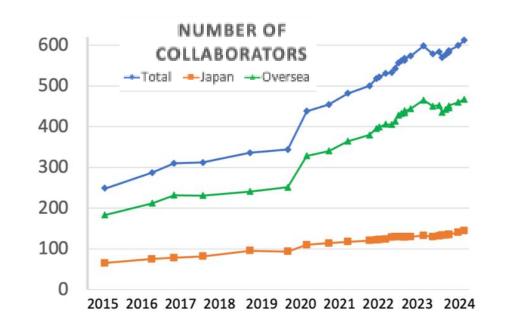
- INGRID: on-axis detector to monitor neutrino beam stability and profile.
- ND280: 2.5 off-axis magnetized tracker to measure neutrino interactions (crosssections) and energy spectrum before oscillations occur. Recently upgraded with: SuperFGD - 2M 1cm³ optically isolated plastic scintillator cubes for 3D track reconstruction - significant improvement in backward angles, also 2 tons target; 2 horizontal gaseous Ar TPCs with central cathode with 1m drift distance; ToF with 6 scintillator planes with 150 ps timing resolution for PID.



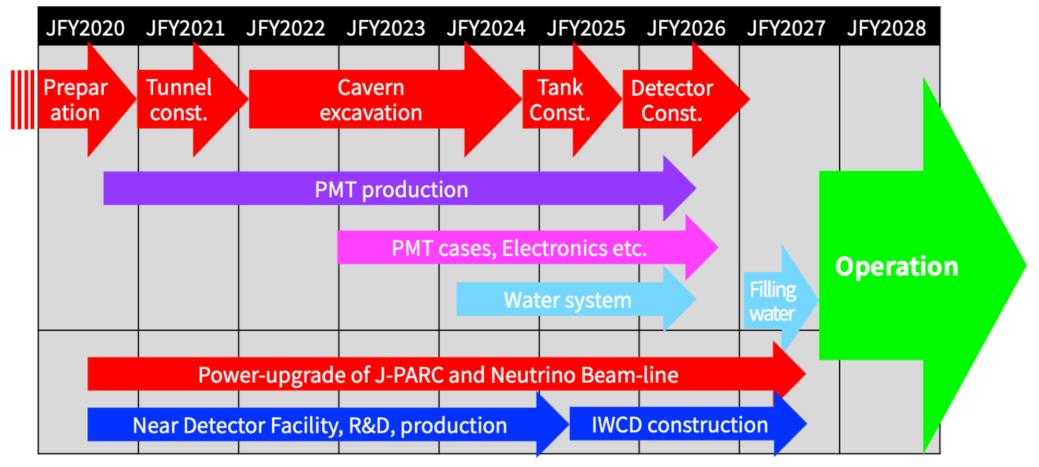


Hyper-Kamiokande Intermediate Water Cherenkov Detector

- Measurement of $\frac{\sigma(v_e)}{\sigma(v_{\mu})} / \frac{\sigma(\overline{v_e})}{\sigma(\overline{v_{\mu}})}$ with ~3% accuracy at 600 MeV to improve δ_{CP} sensitivity significantly. Oscillated neutrino energy spectrum at HK will differ from that at IWCD.
- A linear combination of the results for different off-axis angles will allow to reconstruct the neutrino energy corresponding to an almost monochromatic neutrino spectrum without neutrino interaction models.
- New, vertically movable detector with 400 mPMTs inside 50m (height) × 10m (diameter) water tank, 830m away from the beam source. Facility construction (pit excavation) starts summer 2025.



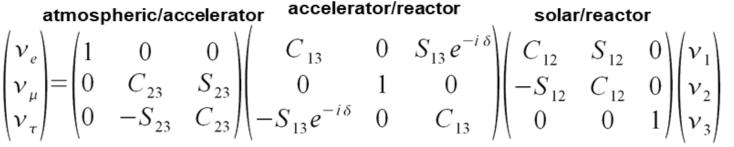
Hyper-Kamiokande Hyper-Kamiokande collaboration


- 6 continents, 22 countries, 106 institutions, ~650 people as of December 2024; ~75% non-Japanese; continuously growing.
- Far detector: Univ. of Tokyo.
- Beam and near detectors: KEK/J-PARC.
- Strong Polish contribution, >30 members; NCBJ, UW,
 - WUT,
 - CAMK,
 - UWr, AGH,

UŚ.

UJ, IFJ PAN,

Hyper-Kamiokande Hyper-Kamiokande: schedule

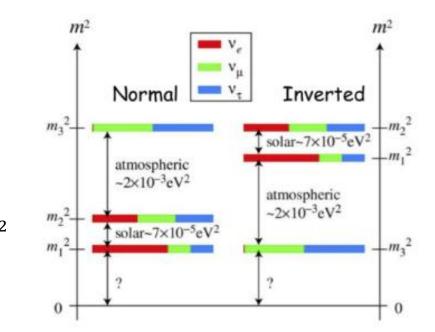


- Construction phase extended (6 months) due to the changes of the structure of the detector top.
- May 2027: start of the water filling.
- December 2027: start of the detector operation.

Hyper-Kamiokande: physics program **Hyper-Kamiokande** IN KATOWICE Physics case Solar neutrinos Atmosp Proton decay Secondary Probe Grand Unified 20 000 m Theories through p-decay (world best sensitivity) Concorde (this talk) MSW effect in the Sun Non-standard interactions Observe CP violation for in the Sun. leptons at 50 Precise measurement of δ_{CP}. Supernovae neutrinos • High sensitivity to v mass ordering. B. Quilain, Conf. of the <u>Direct SNv</u> : Constrains SN models. 2 infinities, Kyoto, 2023 • <u>Relic SNv</u> : Constrains cosmic star formation history JPARC accelerator neutrinos

Hyper-Kamiokande Oscillation of 3v flavors: known & unknown

Unitary, Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix describes the mixing between neutrino flavor and mass eigenstates:



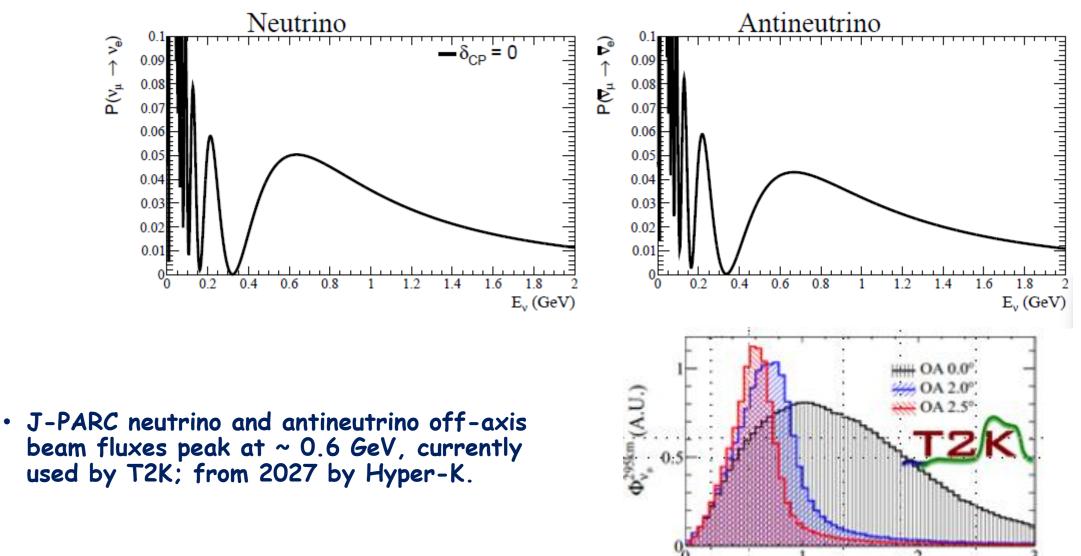
mass

In the three flavor model there are 6 parameters to be measured:

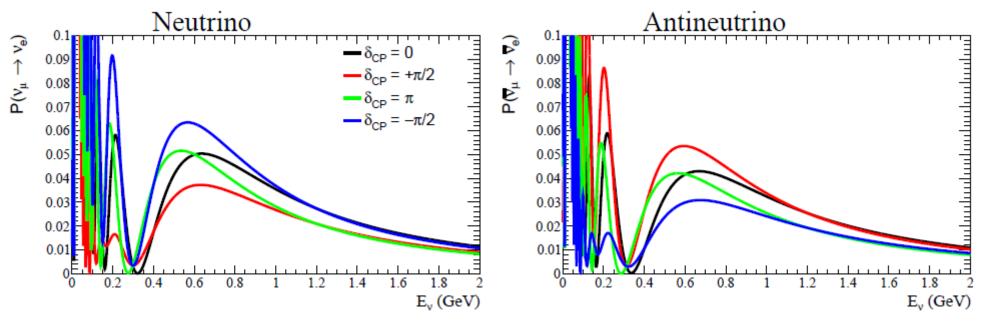
2 differences of mass in quadrature, 3 mixing angles and 1 CP phase (for Dirac neutrinos)

Solution $sin^{2}\theta_{13} = 0.0219 \pm 0.007$ $sin^{2}\theta_{12} = 0.307^{+0.013}_{-0.012}$ $\Delta m^{2}_{21} = 7.53 \pm 0.18 \times 10^{-5} eV^{2}$ **Normal mass ordering** $\Delta m^{2}_{32} = 2.455 \pm 0.028 \times 10^{-3} eV^{2}$ $sin^{2}\theta_{23} = 0.558^{+0.015}_{-0.021}$ **Inverted mass ordering** $\Delta m^{2}_{32} = -2.529 \pm 0.029 \times 10^{-3} eV^{2}$ $sin^{2}\theta_{23} = 0.553^{+0.016}_{-0.024}$ 20.02.2025

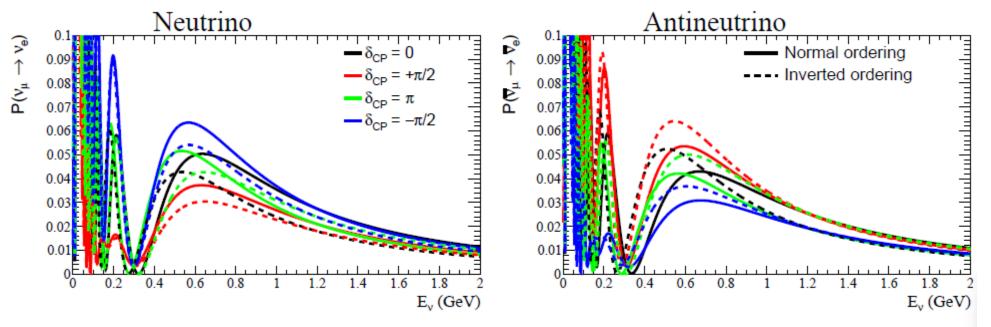
$$S_{ij} = \sin(\theta_{ij}) \\ C_{ij} = \cos(\theta_{ij})$$


Open questions:

- CPV (δ_{CP} phase, difference in $\nu_{\mu}/\overline{\nu_{\mu}}$ oscillations)
- mass ordering
- Θ_{23} > 45° or Θ_{23} < 45° or $\Theta_{23} = 45°$


$HK:v_e(\overline{v_e})$ appearance probabilities, 295 km

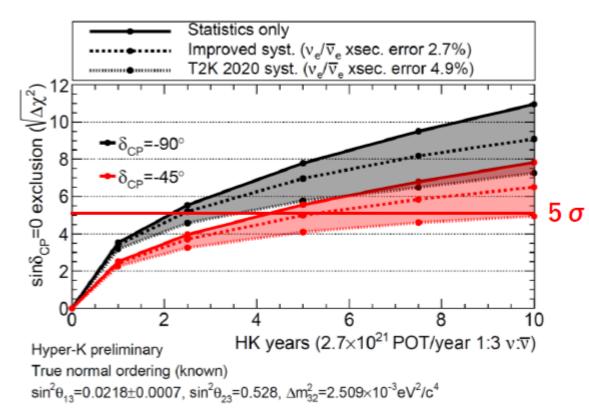
HK: $v_e(\overline{v_e})$ appearance probabilities, 295 km

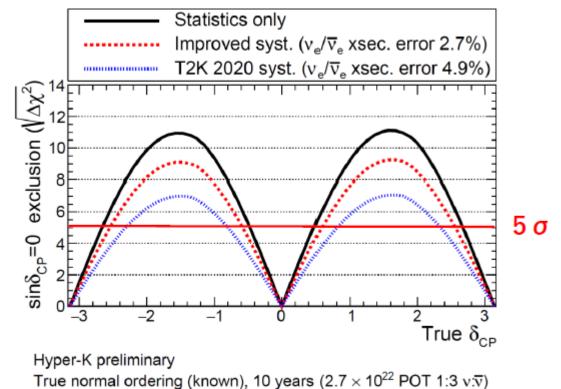

- J-PARC neutrino and antineutrino beam fluxes peak at ~ 0.6 GeV
- For $\delta_{CP} = -\pi/2$: $v_e(\overline{v_e})$ appearance enhanced (suppressed)
- Expected number of events (10 years, $\delta_{CP} = 0^{\circ}$, $\nu : \overline{\nu} = 1:3$; $2.7 \times 10^{22} POT$):

Neutrino beam; μ-like ring	~8800
Antineutrino beam; μ -like ring	~12000
Neutrino beam; e-like ring	~2100
Antineutrino beam; e-like ring	~1800

Character Hyper-**K**amiokande

HK: $v_e(\overline{v_e})$ appearance probabilities, 295 km




- J-PARC neutrino and antineutrino beam fluxes peaks at ~ 0.6 GeV
- For $\delta_{CP} = -\pi/2$: $v_e(\overline{v_e})$ appearance enhanced (suppressed)
- Unknown neutrino mass ordering makes δ_{CP} measurement more complicated, but ...
- Neutrino mass ordering may be resolved with HK atmospheric neutrino data (later in this talk)
- First hint for CPV from T2K exp. (Nature 580 (2020) 339, https://doi.org/10.1038/s41586-020-2177-0)

Hyper-Kamiokande

 $sin^2\theta_{13}=0.0218\pm0.0007$, $sin^2\theta_{23}=0.528$, $\Delta m^2_{32}=2.509\times10^{-3}eV^2/c^4$

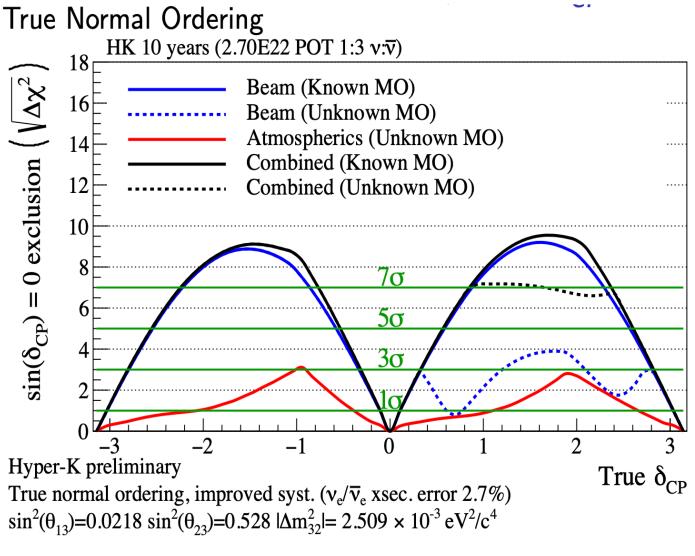
- CPV discovery (5 σ) in 10 years, with known MO for ~60% depending of the δ_{CP} true value.
- δ_{CP} resolutions: 20° if $\delta_{CP} = -\frac{\pi}{2}$; 6° if $\delta_{CP} = 0^{\circ}$
- If NO and $\delta_{CP} = -\frac{\pi}{2}$: exclusion of CP conservation in 3-5 years, depending on systematics. So far, known mass ordering assumed. If unknown – degeneracies degrade

So far, known mass ordering assumed. If unknown – degeneracies degrade δ_{CP} sensitivity, which can be resolved with atmospheric neutrinos (next slide).

vper-Kamiokande

Hyper-Kamiokande Atmospheric/beam neutrino oscillations

- Atmospheric neutrinos: wide energy range (0.1-10³ GeV) & long baseline (10-13000 km) → sensitivity to matter ordering
- Atmospheric neutrinos while penetrating Earth are affected by the mass effect which is sensitive to the neutrino mass ordering:


Normal ordering: $v_{\mu} \rightarrow v_{e}$ is enhanced

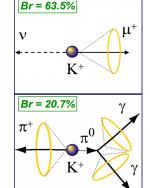
Inverted ordering: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ is enhanced

• Comparison between neutrino and antineutrino oscillation can help to resolve neutrino mass hierarchy.

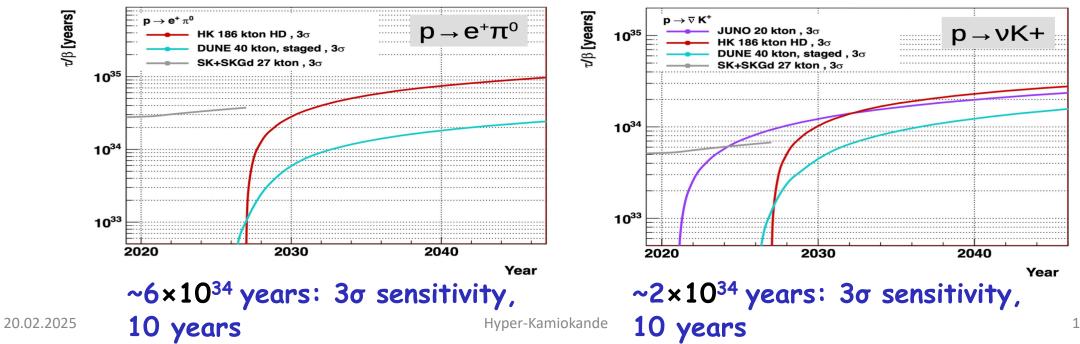
	$\sin^2 \theta_{23}$	Atmospheric neutrino	Atm + Beam	
Mass	0.40	2.2 σ -	→ 3.8 σ	
ordering	0.60	4.9 σ —	→ 6.2 σ	
θ_{23}	0.45	2.2 σ -	→ 6.2 σ	
octant	0.55	1.6 σ -	→ 3.6 σ	

10 years with 1.3MW, normal mass ordering is assumed

Mass ordering and octant: $4-6\sigma$ (10 years)


Hyper-Kamiokande

HK: search for proton decay **CH**yper-Kamiokande



Proton (nucleon) decay is predicted by many Grand Unified Theories.

- Back-to-back EM showers, final state fully reconstructed.
- Compelling evidence: invariant proton mass.
- Efficiency of ~45%, dominated by nuclear absorption of π^0 .

- K⁺ is below Cherenkov threshold (not visible)
- K⁺ identified/reconstructed via its decays:
- $K^+ \rightarrow \mu^+ + v$ (BR=64%): monochromatic (236 MeV) muon.
- or search for $K^+ \rightarrow \pi^0 \pi^+$ decay (BR=21%): π^0 momentum ~ 205 MeV/c and opposite to π^+ .

Hyper-Kamiokande HK: Polish involvement

- NCBJ, CAMK, WUT, UW, IFJ PAN, UJ, AGH, UWr, UŚ
- Design and construction of multi-PMT for the far (HK) and intermediate detector (IWCD)
- Design of data concentration modules and low-voltage power supply modules for underwater electronics
- Design, production and installation of electron linear accelerator, with the deployment and beam steering systems
- WCTE (Water Cherenkov Test Experiment at CERN) 40 ton detector as a test for HK technologies: construction, tests, installation of multiPMTs, DAQ, front-end electronics, participation in the detector installation, calibration, data taking and analysis
- Work on neutrino interaction models with implementation in the NuWro event generator
- Cosmic and beam-related backgrounds simulation
- Participation in large-scale Monte Carlo samples production
- Participation in 20" PMT quality checks
- Development of analysis/software tools for oscillation/cross section studies with HK data
- Project management: EB membership, chairs of Electronic group and Speakers Board, Publication Board membership

- Hyper-Kamiokande is the next generation neutrino experiment in Japan:
 - New, huge, 260 kton water Cherenkov far detector,
 - Upgraded to 1.3 MW J-PARC neutrino beam,
 - Upgraded near detectors,
 - New Intermediate Water Cherenkov detector.
- Wide and ambitious Hyper-Kamiokande physics program is based on detection of neutrinos from various sources (J-PARC beam, atmospheric, supernova, relic, ...), including proton decay searches.
- Construction started 2020 is ongoing; beginning of operation in 2027.

Hyper-Kamiokande HK: sensitivities at a glance

Physics	Parameter	Sensitivity
J-PARC beam neutrinos (1.3 MW; 10 years)	δ_{CP}	7° - 20°
	CPV coverage: 3σ (5σ)	76% (58%)
	$sin^2 heta_{23}$ (uncertainty for 0.5)	± 0.017
J-PARC beam neutrinos + atmospheric (10 years)	Mass ordering	> 3.8 σ
	Octant determination, 3σ	$ \theta_{23} - 45^{\circ} > 2^{\circ}$
Solar neutrinos (10 years)	Day/Night: from 0 (from KL)	8σ (4σ)
	Upturn	> 3σ
Supernova neutrinos	10 kpc burst	54k – 90k events
	Relic neutrinos	\sim 70 in 10 years
Proton decay (20 years)	Lifetime (3 σ): $e^+\pi^0$	1×10^{35} years
	Lifetime (3 σ): v K^+	3×10^{34} years