PARTICLE ACCELERATION DURING RELATIVISTIC MAGNETIC RECONNECTION

KRZYSZTOF NALEWAJKO

NICOLAUS COPERNICUS ASTRONOMICAL CENTER POLISH ACADEMY OF SCIENCES

NATIONAL SCIENCE CENTRE

NON-RELATIVISTIC MAGNETIZATIONS

 $\sigma = \frac{B^2/4\pi}{\rho c^2 + u_{\rm int} + P} \ll 1$

RELATIVISTIC MAGNETIZATIONS

 $\sigma = \frac{B^2/4\pi}{\rho c^2 + u_{\rm int} + P} > 1$

MAGNETIC RECONNECTION

magnetic diffusion region (X-point)

reconnecting magnetic field (background, upstream) reconnection outflow (downstream)

RECONNECTION MODELS

plasmoid-dominated

PETSCHEK MODEL IN ELECTRON-ION PLASMA

Liu et al. (2022)

PETSCHEK MODEL IN RELATIVISTIC PAIR PLASMA

modified Ohm's law $\mathbf{E} + \mathbf{V} \times \mathbf{B} = -\frac{1}{\Gamma e n'} \left[\partial_j \left(\mathcal{E} U^i U^j + Q^{ij} + P^{ij} \right) + \partial_t T^{i0} \right]$

and the diffusion region width– The following derivation of the relativistic Ohm's law is due to Zenitani [24]. The stress-energy tensor can be decomposed as

 $T^{\alpha\beta} = \mathcal{E}U^{\alpha}U^{\beta} + Q^{\alpha\beta} + P^{\alpha\beta}$ (19)

where U^{α} is an arbitrary flow 4-velocity. With $\Delta^{\alpha\beta} \equiv \eta^{\alpha\beta} + U^{\alpha}U^{\beta}$ as the projection tensor, $\mathcal{E} \equiv T^{\alpha\beta}U_{\alpha}U_{\beta}$ is the energy density in the U^{α} -moving frame. $Q^{\alpha\beta} = q^{\alpha}U^{\beta} + U^{\alpha}q^{\beta}$ is the heat flux tensor, where $q^{\alpha} \equiv -\Delta^{\alpha}_{\beta}T^{\beta\mu}U_{\mu}$ is the heat flux 4-vector. $P^{\alpha\beta} \equiv \Delta^{\alpha}_{\mu}\Delta^{\beta}_{\nu}T^{\mu\nu}$ is the pressure tensor projected in the U^{α} -moving frame.

Goodbred & Liu (2023)

PARTICLE ACCELERATION IN RELATIVISTIC RECONNECTION

particle-in-cell simulations: Zenitani & Hoshino (2001)

iterative integration of test particles: Larrabee, Lovelace & Romanova (2003)

HARD PARTICLE SPECTRA IN RELATIVISTIC RECONNECTION

- reconnection produces power-law distributions that are hardening with increasing sigma $dN/d\gamma \propto \gamma^{-p}$ with $p \rightarrow 1$ for $\sigma \gg 1$ (Sironi & Spitkovsky 2014, Guo et al. 2014, Werner et al. 2016)
- high-energy cut-off is exponential with $\gamma_{\rm max} \sim \mathcal{O}(\sigma)$
- $p \rightarrow 2$ in very large plasmoids in 2D (Petropoulou & Sironi 2018)
- 3D relativistic reconnection produces hard particle spectra $f(\gamma) \propto \gamma^{-p}$ with $p \sim 1.5$ (Zhang, Sironi & Giannios 2021)

Zhang,

Sironi

FERMI PROCESS (?)

first-order

second-order

PARTICLE ACCELERATION SCENARIOS

KN, Uzdensky, Cerutti, Werner & Begelman (2015)

PARTICLE ACCELERATION SITES

- magnetic diffusion regions (X-points): non-ideal E-fields (Zenitani & Hoshino 2001) most energetic particles pass through them (Sironi & Spitkovsky 2014) short interaction times (Guo et al. 2019)
- reconnection outflows (minijets): Speiser orbits exceeding radiation reaction (Kirk 2004) low particle density 2
- plasmoids: converging magnetic1r compressed plasmoid particle traps (in 2D)-34 relatively slow, imited by radiation reaction
- plasmoid mergers: 10-3 secondary reconnection layers production of rapid and luminous flares (KN et al. 2015, Ortuño 1 Macías & KN 2020) 101 $\gamma_e - 1$

KN et al. (2015)

 10^{-1}

 10^{-2}

Sironi & Beloborodov (2020)

PARTICLE ACCELERATION: PLASMOIDS VS MINIJETS

 X/L_x

J. Ortuño-Macías & KN (2020)

THE ROLE OF NON-IDEAL E-FIELD

see also Gupta, Sridhar & Sironi (2025)

PROGRESS SINCE 2023

3D RECONNECTION WITH SYNCHROTRON COOLING

particle trapping in dense magnetic flux tubes: - permanent in 2D - temporary in 3D

synchrotron cooling limits acceleration to low- B_{\perp} regions

> Chernoglazov, Hakobyan, & Philippov (2023)

see also: Zhang, Sironi, Giannios & Petropoulou (2023) Zhang, Guo, Daughton, Li & Li (2024)

10

EFFECTIVE RESISTIVITY: PIC \rightarrow MHD

& Keppens (2023) $\eta_{B24} = \frac{1}{en_t c} \sqrt{\left(\frac{mc}{e}\partial_y v_y\right)^2 + \left(\Gamma E_z^*\right)^2}$ B24 = Bugli, Lopresti, Figueiredo, Mignone, Cerutti, Mattia, Del Zanna, Bodo & Berta (2024)

$$\eta_{\text{eff}} = \frac{\alpha B_0}{|\mathbf{J}| \left[1 + (c/|\mathbf{v}_{dr}|)^{p+1}\right]}$$

Moran, Sironi,
Levis, Ripperda,
Most & Selvi (2025)

RECONNECTION BY ERUPTING (MAD) BLACK HOLES

Ripperda, Liska, Chatterjee, Musoke, Philippov, Markoff, Tchekhovskoy, & Younsi (2022)

probably the best reconnection sites in the Universe (low guide field)

magenta: relativistically hot reconnection layer flattened along the equatorial plane

red: horizon-disconnected massdepleted lines

Nalewajko, Kapusta & Janiuk (2024) POSTER

SUMMARY

- Magnetic reconnection is a universal mechanism for dissipation of magnetic energy into motion, heat and non-thermal particles.
- In relativistically magnetized plasmas, for $\sigma = B^2/(4\pi w) \gg 1$, reconnection has been proven to be a very efficient mechanism of non-thermal particle acceleration, producing energy distributions $N(E) \propto E^{-p}$ with index $p \sim 1 - 2$.
- Particle acceleration in relativistic reconnection is a complex process, involving both ideal (motional) and non-ideal electric fields. The importance of non-ideal E-fields is debated. It has been described as a Fermi process.
- Reconnection layers develop substructures: X-points (diffusion regions), Alfvenic outflows (minijets), plasmoids (magnetic flux ropes). Particle acceleration can take place (1) between X-points and minijets (Speiser orbits), (2) between merging plasmoids, (3) within plasmoids (magnetic mirrors).
- 3D effects are important; low guide-field reconnection by erupting black holes; energy density enhancement.

Thank You!