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 WFA in relativistic shocks?

 WFA in non-rel. shocks?

You need rel. particles for SMI to be excited.

 But…

What about mildly relativistic shocks?

✓
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Where can we find these?

 X-ray binaries / Microquasars

 Jets (mildly rel. locations)

 Quite strong B field

 Classic example: SS 433

 AGN jets / AGN hot spots

 𝛾𝑏𝑢𝑙𝑘~𝑎 𝑓𝑒𝑤

 Strong X-ray emission

 Magnetic field structure?
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9

 Mildly relativistic shocks have a wider 

range of subluminal conditions!

 Subluminal? You may ask…

Critical angle vs. Shock 

Lorentz factor with two 

examples.

Subluminal 

configurations allow 

for particle reflection!

𝑣𝑠ℎ = 𝑐 cos 𝜃𝑐𝑟
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 Kinetic processes can be studied using Particle-In-Cell (PIC) 

simulations.

Typical PIC 

simulation  plot: 

electron density 𝜌𝑒. 

𝑣𝑠ℎ

10

 PIC method:

▪ Follow charged particles trajectories

+

▪ Self-consistent electromagnetic field.

▪ Fully solve eqs. motion and Maxwell equations.
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1. Lorentz factor 𝛾𝑠ℎ ≈ 3.3 2. Magnetisation σ = 1

𝜎 =
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𝜔𝑝
2 =

𝐵2
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3. Obliquity 𝜃𝐵𝑛 = 10°, 30°  This “middle ground” of mildly 

rel. shocks looks promising!
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Electrostatic potential and normalised 
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 Strong ion and electron 

acceleration.

 Note the units! 

 Clearly, there must be a relation 

with 𝜙.

 Acceleration parallel to B.

 px and pz.
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 Following Bessho and Ohsawa 1999, 2002:

 Strong magnetosonic wave + Oblique magnetic field

=

 Electron trapping and acceleration!

Electron acceleration 15

1. Electrons get trapped in the large electrostatic potential.

2. Acceleration over many cycles.

3. Net energy increases!

𝛾𝑚𝑎𝑥 ≈ 10,000
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 But there are other kind of waves

 Precursor waves

 And?

CP waves
??? Precursor 

waves
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 Very low Mach number (𝑀𝐴 < 𝑀𝑐𝑟): Dispersive whistlers

 Large amplitude waves? Two possibilities:

 Ion-Ion cyclotron beam resonance instability? Upstream plasma + Reflected ion beam

 (Reflected or Upstream) Ion + whistler resonance?

Disp. whistlers

Under investigation…

Maybe both!



 Mildly relativistic shocks enable particle acceleration mechanisms 

different than that at ultra-rel. shocks at subluminal configurations.

 Oblique shocks accelerate electrons and ions to very high energies.

 Quasi-parallel shocks generate strong waves that mediate strong 

particle heating and acceleration.

Summary 19


