

SST-1M stereoscopic system: Overview and preliminary results

Laetitia Gibaud University of Białystok, Poland

on behalf of the SST-1M collaboration

PAiP-2025, 20-22 February 2025

Outline

- SST-1M overview
 - ➤ Project & status
 - ➤ The SST-1M telescopes
 - ► Stereoscopic system
- Preliminary results
 - ≻ Crab Nebula
 - ► Blazar MRK 421
 - ➤ Complex region VER 2019+368
- Summary & perspectives

SST-1M overview/

The SST-1M project & status

Consortium of research institutions from Czech Republic (6 institutes), Poland (7), and Switzerland (3)

Originally developed for the Cherenkov Telescope Array as prototypes of small size telescopes (SST)

- Frame built in Krakow
- Camera built in Switzerland
- Mirrors made in Czech Republic
- 2 fully operated telescopes re-installed in Ondřejov Observatory, operating in mono and stereo regimes:
 - 1 prototype
 - 1 pre-production

Designed to detect very high energy γ rays, induced atmospheric showers in the energy range of 3-300 TeV (Heller et al. 2019).

The SST-1M project & status

From 2022: SST-1M pipeline development

From 2023: obs. campaigns (e.g., Crab Nebula, MRK 421)

The SST-1M telescopes

Structure & optics

- lightweight & compact structure of 8.6 tons
- optical layout: Davies-Cotton design
- 4 m diameter, primary multi-segment mirror dish
- f/D 1.4

18 hexagonal facets

Mirror facet with alignment system

CCD & PSF cameras (used for telescope pointing)

- Silicon Photo-Multipliers (SiPMs) based camera
- 1296 pixels (linear size: 2.34 cm) ; each one using Bèzier curves cones
- FOV of all Cherenkov light camera: 9°
- Equiped with fully digital trigger and readout architecture (Digicam)
- Entirely remotely controlled through GUI

Entrance window 3 mm Borofloat coating (filter optimized for light below 540 nm)

Alispach et al. JCAP02(2025)047

Ondřejov Observatory, Czech Republic

35 km SE of Prague

Tel 1

Tel 2

Readout chain implementation

Both cameras connected to White Rabbit for synchronization

Reception of a trigger

Event data packets sent to the Camera Server

DT: time diff. of same obs. with both telescopes

Stereo trigger management

Trigger packets from both telescopes

Camera servers send timestamps

SWAT (Software Array Trigger) searches for coincidence

Possible stereo

1rst stereo obs. of a single shower – 04/2023

 $\langle 11 \rangle$

Preliminary results

Luz5, Wars

Crab Nebula

Obs. campaign 2023/2024 => 23.6 hours of stereo data after quality cuts

Crab stereo data set acquired with two wobbles configurations

Credit: NASA, ESA, CSA, STScl, T. Temim (Princeton Univ.)

Crab Nebula

Outstanding **background homogeneity** on a scale of a few degrees

Promising capabilities for obs. of **extended sources**

PAiP-2025, Warsaw

Blazar MRK 421

Obs. campaign spring 2024 – nearby AGN monitoring => 23.5 hours of stereo data after quality cuts

First extragalactic source in real SST-1M stereo regime High state detected on 13/03/2024 -> **ATel #16533**

Source: http://skyserver.sdss.org/

Detection of enhanced very-high-energy gamma-ray emission from Markarian 421 ATel #16533; Thomas Tavernier, in the behalf of SST-1M Consortium on 15 Mar 2024; 16:55 UT Credential Certification: Thomas Tavernier (tavernier@fzu.cz)

Subjects: Gamma Ray, TeV, VHE, AGN, Blazar

Referred to by ATel #: 16537

-0.5

-1.0

-1.5

-2.0 ŭ

-2.5 L

-3.0

-3.5

-4.0

Blazar MRK 421

Complex region VER 2019+368 (Dragonfly)

- Discovered by MILAGRO (Abdo et al. 2009)
- Slightly extended (approx. 0.5°) and asymmetric region
- Complex region showing multi sources in radio, X rays, γ rays:
 - SNR CTB 87
 - 2 pulsars
 - PWN G75.2+0.1
 - Fast X-ray transient IGR J20188
 - Star forming HII region Sh 2-104
 - Wolf-Rayet star WR 141

PAiP-2025, Warsaw

Complex region VER 2019+368 (Dragonfly)

Significance map

VER (2018+367

VER (2016+37)

Galactic Longitude

SST-1M

75°30

SST-1M obs. campaign in 2024 ~44 hours of stereo data after quality cuts

- Obs. with significance: 6 sigma
- CTB 87 and VER J2019 regions clearly resolved

00'

Spectral analysis with a fixed signal region on the VERITAS reported position and size (Abeysekara et al. 2018), testing for the presence of a source:

1LHAASO (2018+3643

1LHAASO (2020+3638

1LHAASO 12020+364

74°30'

Summary & perspectives

Key takeaways & future directions

- 2 telescopes successfully built and operational, collecting data since 2022
- Innovative detector technology, featuring a fully digital readout (DigiCam)
- Observations in both mono & stereo modes confirm SST-1M's capabilities for γ ray astronomy
- Successful detections of both **galactic** and **extragalactic** sources
- Capabilities for observation of **extended sources**
- Ongoing 2nd observation campaign
- Relocation project underway to move the telescopes to a higher altitude observation site

Thank you!

Extra materials

Why array?

ARRAY

Better background rejection Better angular resolution Better energy resolution 1. A gamma-ray interacts about ~20km in the atmosphere generating an electromagnetic shower

2. The Cherenkov pulse lasts few nanoseconds and generates a light pool of ~ 120 m

3. Light is collected by a reflector and focused on a camera

120 m·

Comparisons

Crab Nebula

Outstanding **background homogeneity** on a scale of a few degrees

Promising capabilities for obs. of **extended sources**

PAiP-2025, Warsaw

Blazar MRK 421 – PL & ECPL fits

26