

HAWC 10 year anniversary

PaiP, 20-22 Feb 2025, Warsaw, Poland

On behalf of the HAWC Collaboration Sabrina Casanova, IFJ-PAN Krakow

outline

- HAWC Observatory

- Selected HAWC results

Galactic Plane Survey from TeV to hundred TeV

The Variable Sky

The Galactic Centre

- SWGO

- Conclusion and Outlook
- Back-Up Slides

HAWC Site

- HAWC is located on the flanks of the Sierra Negra volcano near Puebla
- 4,100 meters (13,500 feet) above the sea level

High-Altitude Water Cherenkov Gamma-Ray Observatory

300 ×

-rex for scale

Pico de Orizaba Puebla, Mexico (19°N)

5m tall, 7.3 m diameter ~200,000 L of water

4 PMTs facing upwards collect Cherenkov light produced by secondary particles

4,100 m.a.s.l.

Inaugurated March 2015.

Instantaneous FOV 2sr

Daily FOV 8sr (66% of the sky)

Energy range: 100s GeV to 100s TeV

Observing >95% of the time

Angular resolution $0.2^{\circ} - 1^{\circ}$

345 outriggers since 2018

22,000 m²

HAWC Water Cherenkov detector and detection technique

Steel frame construction

Large plastic bag container

3900 Water trucks filling the tanks

8-inch 10-inch PMTs WCDs with 200,000 I of purified water.

Particles from the shower induce Cherenkov light in water, detected by 4 PMTs.

Measure: time and light level in each PMT

Reconstruct: core, energy, direction and background rejection

Pass 5 sensitivity

The Galactic Plane from TeV to subPeV energies

3HWC Catalog

CONSTRAINTS STRAINTS STRAINTS STRAINTS STRAINTS STRAINTS STATUS

1[*]

ġ \sqrt{TS} 1543 days of data Pass 4

65 sources of which 56 can be associated to pulsars

The Galaxy above 56 TeV

Source name	RA (°)	Dec (°)	Extension >	F (10 ⁻¹⁴	PTS>	nearest 2HWC	Distance to		PTO
			56 TeV (°)	ph cm ⁻² s ⁻¹)	56 TeV	source	2HWC source(°Y	100 TeV
eHWC J0534+220	83.61 ± 0.02	22.00 ± 0.03	PS	1.2 ± 0.2	12.0	J0534+220	0.02		4.44
eHWC J1809-193	272.46 ± 0.13	-19.34 ± 0.14	0.34 ± 0.13	2.4 ^{+ 0.6} - 0.5	6.97	J1809-190	0.30		4.82
eHWC J1825-134	276.40 ± 0.06	-13.37 ± 0.06	0.36 ± 0.05	4.6 ± 0.5	14.5	J1825-134	0.07		7.33
eHWC J1839-057	279.77 ± 0.12	-5.71 ± 0.10	0.34 ± 0.08	1.5 ± 0.3	7.03	J1837-065	0.96		3.06
eHWC J1842-035	280.72 ± 0.15	-3.51 ± 0.11	0.39 ± 0.09	1.5 ± 0.3	6.63	J1844-032	0.44		2.70
eHWC J1850+001	282.59 ± 0.21	0.14 ± 0.12	0.37 ± 0.16	1.1+0.3	5.31	J1849+001	0.20		3.04
eHWC J1907+063	286.91 ± 0.10	6.32 ± 0.09	0.52 ± 0.09	2.8 ± 0.4	10.4	J1908+063	0.16		7.30
eHWC J2019+368	304.95 ± 0.07	36.78 ± 0.04	0.20 ± 0.05	1.6+ 0.3	10.2	J2019+367	0.02		4.85
eHWC J2030+412	307.74 ± 0.09	41.23 ± 0.07	0.18 ± 0.06	0.9 ± 0.2	6.43	J2031+415	0.34		3.07

Galactic Plane, > 56 TeV (0.5 degree extended source assumed)

The Galaxy above 100 TeV: Spectra

HAWC Collaboration+20

Source	TS	Extension (°)	\$\phi_0\$ (10 ⁻¹³ TeV cm ² s) ⁻¹	Ч	Ecut (TeV)	PL di⊷
eHWC J1825-134	41.1	0.53 ± 0.02	2.12 ± 0.15	2.12 ± 0.06	61 ± 12	7.4
Source	TS	Extension (°)	\$\phi_0\$ (10 ⁻¹³ TeV cm ² s) ⁻¹	┙	β	PL di⊷
eHWC J1907+063	37.8	0.67 ± 0.03	0.95 ± 0.05	2.46 ± 0.03	0.11 ± 0.02	6.0
eHWC J2019+368	32.2	0.30 ± 0.02	0.45 ± 0.03	2.08 ± 0.06	0.26 ± 0.05	8.2

2800 day maps > 56 TeV

0.5 deg

K. Malone

pointlike

most sources are extended

K. Malone

0.5 deg

10 6 significance [σ]

pointlike

most of which extended

0.5 deg

K. Malone

pointlike

4HWC catalogue in preparation

HAWC Observations of Variable Sources

HAWC monitors variable sources and discovers new transients

	Distance (kpc)	Companion star mass (M_{\odot})	$\begin{array}{c} \text{Compact} \\ \text{star mass} \\ (M_{\odot}) \end{array}$	Orbital period (days)	Orbital axis inclination (°)	Jet axis inclination (°)	
V4641 Sgr	6.2 ± 0.7	2.9 ± 0.4	6.4 ± 0.6	2.817 ± 0.002	72. 3 ± 4.1	<16	
SS433	~ 5.5	>10	8	13.082	79		X. Wang
LS5039	~2.5	22.9 +3.4 -1.3	3.7 +1.3 -1.0	3.90603 ± 0.00017	24.9 ± 2.8		

SS433 Lobes

Binary observed in radio-X-rays

Supergiant > 10 M_{\circ} and 8 M_{\circ} compact object, BH or NS

Accretion believed to be super Eddington

Barion loaded SS433 jet : 10³⁹⁻⁴⁰ erg/s

SS433 jet speed roughly c/4

Most powerful jets in the Galaxy terminate at 40 pc distance in W50 nebula and produce western and eastern X-ray lobes

Particle acceleration & GeV-TeV radiation predicted at the lobes

SS-433 lobes with HAWC

0

5

significance

10

0 [.]9 -1[.]9 -3significance [\sigma] 43 42 41 4039 1[*] -3Nature, HAWC Coll 2018 10 2 6 8 12 0 4 14 significance $[\sigma]$ 42 43 41 40 11 -10 2 3 1 -2significance $[\sigma]$ 1D Significance Histogram 10² [.]q Raw Map Data Expectation Fit $mean = 0.892 \pm 0.053$ width = 1.069 ± 0.043 Number of Pixels 101 -3Extended Data Table 3 Systematic uncertainties on the flux from SS 433 Systematic East Lobe West Lobe Detector Systematic Effects $\pm 50\%$ MGRO J1908+06 Modeling $< \pm 20\%$ Galactic diffuse contamination -10%-20%40Total $\pm 55\%$ $\pm 55\%$ l[°] Systematic 1σ error budget for the VHE γ -ray fits. $^{-1}$ 0 2 1 3 4 10⁰ significance $[\sigma]$

SS433 field after subtracting the lobes

SS 433 field after subtracting MGRO J1908+06

SS-433 lobes with HAWC

Energy Budget :

~0.5% of jet power into electron acceleration

~100% of jet energy over 30000 years lifetime of SS 433 into accelerating protons of at least 250 TeV with spectral index -2. if n=0.1 cm⁻³ But do we really know the ambient gas density ?

- The first micro-quasar HAWC detected
- 1017 days of HAWC observations
- Post-trial 5.4 σ
- Emission coincident with e1 and w1
- HAWC emission shows that powerful jets accelerate particles beyond 100 TeV
- Combining γ and X-rays B~16 μ G

- 1922 days of data
- **Better Reconstruction**
- Blind search of the region yields • results compatible with 2018 analysis
- Increased significance
- Individual analysis and spectra of the lobes

14

16

- Transient X-ray binary first detected flares in 1999 – X-ray flux reached 12.2 Crab in 8 hr
- Arcsec radio jets inclined < 16° (VLA)
- Black-hole 6.4 M_{\odot} (MacDonald+2014)
- B-star companion 2.9 $\,\rm M_{\odot}$
- Orbital period 2.8 d, distance 6.2 kpc
- Super-Eddington accretion
- Superluminal jets apparent expansion speed 9.5c

VHE Photons coincident with V4641 Sgr

VHE Photons coincident with V4641 Sgr

HAWC Collaboration, Nature 2024

- 2400 days obs 26.11.2014 till 27.06.2022 on-array events 3 deg ROI ²⁰
- High zenith angle for HAWC 45° off zenith
- 8.8σ above 1 TeV and 5.2σ above 100 TeV

Spectra and morphology of the lobes

HAWC Collaboration, Nature 2024

•Morphology: two sources or a roughly 70 pc extended one

•Highest energy measured: 220 TeV

•No time flux variations using selected time intervals

Do micro-quasars provide PeV particles?

$$\dot{W}_{\rm p}(E_{\rm p} > 1 \,{\rm PeV}) = L_{\gamma} \frac{t_{\rm pp}}{t_{\rm esc}}$$
$$\simeq 10^{39} \eta \left(\frac{L_{\gamma}}{10^{34} \,{\rm erg \, s^{-1}}}\right) \left(\frac{D_0}{3 \times 10^{30} \,{\rm cm^2 \, s^{-1}}}\right) \left(\frac{n}{1 \,{\rm cm^{-3}}}\right)^{-1} \,{\rm erg \, s^{-1}}$$

What about the gas density ?

Galactic Diffuse Emission

HAWC, ApJ 2023

					1	
Imin	Imax	lbl <	F ₇ →10 ⁻¹²	Index	f ₁₀	f ₁₀₀
(°)	°)	(°) ((TeV ⁻¹ s ⁻¹ cm ⁻² sr ⁻¹)		%	
43	73	2	$8.89 \pm 0.37^{+0.70}_{+0.48}$	$-2.61 \pm 0.03^{+0.04}_{+0.02}$	72.7	71.8
43	73	4	$5.45 \pm 0.25^{-0.44}_{+0.38}$	$-2.60 \pm 0.03^{-0.04}_{+0.01}$	76.1	75.3

Source-subtracted map

Diffuse Emission from the CMZ

HAWC Collaboration, ApJL 2024

- •2456 days observations
- GC at 48° zenith
- •6.5 σ detection in Pass 5

•Best-fit model : point-like source with a simple power law spectrum up to at least 100 TeV

HAWC emission after subtracting HESS J1745-290 (Sgr A*) and HESS J1746-285 (Radio Arc)

5.7 sigma detection

Remaining flux extends to UHE and reveals a PeVatron at the GC as first suggested by HESS

HAWC View of the Galactic Centre Ridge

- HAWC and HESS fluxes compatible
- No spectral cutoff
- Maximum γ energy detected in HAWC
 - 1 sigma: 69.57 TeV
 - 2 sigma: 50.17 TeV
 - 3 sigma: 34.24 TeV

The cosmic-ray energy density estimated with HAWC gamma-ray luminosity suggests constantly accelerated 0.1-1 PeV protons in the GC region.

$$w_{\rm p}(\geq 10E_{\gamma}) = 1.8 \times 10^{-2} \left(\frac{\eta_N}{1.5}\right)^{-1} \left(\frac{L_{\gamma}(E_{\gamma} \geq 10 \text{ TeV})}{10^{34} \, {\rm erg/s}}\right) \left(\frac{M}{10^6 M_{\odot}}\right)^{-1} \, {\rm eV/cm^3} \approx 8.1 \times 10^{-3} \, {\rm eV/cm^3}$$

Extreme accelerators in HAWC sky

54

53

Declination [22

50

49

Molecular Cloud – LHAASO 2108 2d Microquasars

The future of Wide-Field-of-View Gamma Observatories: SWGO

— SWGO | Gamma2024 in Milan —

Slide by Barres de Almeida

SWGO Collaboration

Argentina	Italy
Brazil	Mexico
Chile	Peru
China	Portugal
Croatia	South Korea
Czech Republic	United Kingdom
France	United States
Germany	

SWGO partners

- → 15 countries, over 90 institutes
- → + supporting scientists

Plans

- Site Decision made Atacama Chile
- Design Decision expected within 2025
- Preparatory phase The Southern Wide-field

0.85

0.90

0.95

0.63%

Conclusions and Outlook

Since 2015 HAWC has shown that the Galaxy is full of VHE-UHE sources

- Survey of the Galaxy in the TeV- hundred TeV domain
- Monitor and serendipitous discovery of transient sources up to hundred TeVs
- Diffuse emission from the GP and CMZ Confirmation of GC PeVatron
- TeV photons from the Sun
- Star Formation regions
- New source class : TeV halos.
- Boomerang region : SNR as PeVatrons

Plans for Future

- Analysis of multiple year data from the outrigger array in Pass6
- HAWC plans to continue operation waiting for SWGO

Back-up Slides

VHE AND UHE Photons from SFRs and the origin of Galactic CRs

Cyg OB2 in IR, GeV and TeV

Fermi detected hard and extended emission from Cygnus X, between OB2 and Gamma Cygni SNR

First superbubble up to 100 TeV energies

4

-4 -2

Ó

2

/[°]

6 significance $[\sigma]$

8

10 12 14

Cosmic Ray Acceleration in SFRs

CRs up to PeV energies accelerated within a region the SFR

CR energy density > 10 TeV higher than local CR energy density

1/r profile - a continous injection. Constant profile - a recent burst event happened less than 0.1 Myr

10000 CygOB2 would be required for CRs Galactic population

TeV-PeV pulsar Wind Nebulae and halos

Geminga - PWN

Geminga is one of the brightest GeV sources in the northern sky It's a middle-aged 340kyr, pulsar T=0.237s It's close to earth - 250^{+250}_{-62} pc X-Ray PWN seen to be very small First seen in TeV by Milagro at 40 TeV in 2009 HAWC also sees energies above 25TeV Very extended in the TeV - ~5 degrees across Geminga and Monogem, similar in age and distance, were suggested as contributors of the positron fraction (Aharonian+1995).

Extended TeV emission around the pulsars Geminga and Monogem

Geminga and Monogem : about 5 deg ext

Assuming emission from electrons diffusing in the ISM, then extension is a direct measurement of particle diffusion $\theta(20 TeV) \,\alpha \,\sqrt{[D(100 TeV)]}$ •

Significance [sigmas]

 $D(100 \text{ TeV}) = (4.5 \pm 1.2) \ 10^{27} \text{ cm}^2/\text{s}$, roughly 100 times smaller than diffusion from B/C ratio 37

Source Name	$K(dE/dt \rightarrow e^-e^+)$	$\log_{10} D_0 \; [{ m cm}^2/{ m s}]$	$lpha_e$	TS
Geminga	$(6.3 \pm 0.9) \times 10^{-2}$	$(2.602 \pm 0.008) imes 10$	1.11 ± 0.09	834.73
Monogem	$(4.3 \pm 0.6) \times 10^{-2}$	$(2.616 \pm 0.007) imes 10$	1.10 ± 0.11	363.13

PWN Halos - PSR J0359+5414

2321 day map

PSR J0359+5414 - Newly discovered TeV Halo

Outer galaxy, isolated, radio quiet

Age = 75kyr

High Spin-down power: 10³⁶ ergs/s

Looking for TeV photons from the Sun

The rise of the TeV Sun.

42

Overall

HAWC, ApJ 2022

Observations of SNRs and PeVatron candidates

SNR G106.3+2.7: Galactic PeVatron ?

44

- SNR G106.3+2.7 is a 10kyr comet-shaped radio source at 0.8 kpc
- PSR J2229+6114, seen in radio, X-rays, and gamma rays
- Boomerang Nebula is contained in the remnant
- VERITAS source (energy range 900 GeV 16 TeV)
- HAWC emission pointlike, morphology compatible with VERITAS source and coincident with a region of high gas density

G106.3+2.7 : a Galactic PeVatron?

Gamma PL : 2.29, Lower limit on gamma Ecut = 120 TeV

Proton PL: 2.35, Lower limit on proton Ecut = 800 TeV,

Wp = $10^{48} (n/50)^{-1} erg$

HAWC J2227+ 610 (Boomerang region)

HAWC J1908+06 as neutrino source?

Some HAWC PeV candidates are promising neutrino sources

Neutrinos seen in coincidence with a PeVatron candidate would unambiguously indicate hadronic origin

J1908+06 one of best p-values in IceCube point source searches, although still consistent with background-only hypothesis

eHWC J1842-035

Complex morphology , 0.3-0.4 deg

Maximum energy in HAWC > 100 TeV

Study ongoing

eHWC J1825-134

	HAWC	LHAASO	
Location	R.A. 276.44° Dec13.42°	R.A. 275.45° Dec13.45°	
Morphology	2 extended sources + 1point source	0.3 ° extension template	
Maximum measured energy	>200 TeV	420 TeV	
Origin of TeV emission	Proton accelerated by SFR Electron accelerated by PSR J1826-1334		

Multiple Sources

Above 177 TeV

53

HAWC J1825-134 and LHAASO J1825-136 above 200 TeV

LHAASO J1826-1256 & J1825-1345(>25 TeV)

LHAASO J1826-1256

TS=214.08

TS=393.73

LHAASO J1826-1256 & J1825-1345 (>100 TeV)

New Source Discovery

LHAASO J0341+5258

WCDA has accumulated data for 16 months KM2A for 12 months LHAASO catalog Ver-1 will be published soon with many new VHE/UHE sources discovered

Erec > 100 TeV,S=8.50 53.2 39.0 6 52.6 53.5 38 Significance(σ) 3HWC 10621 Dec (deg) PSD INTAL Dec.[deg] 4 53 +3749 51.9 GL 10340 4 PSR .10622. 37.5 2 52.5 51.2 37.0 PSF PSF 0 36.5 50.5 319.6 97.5 97.0 96.5 96.0 95.5 95.0 94.5 94.0 93.5 317.3 318.5 316.1 314.9 55.5 55 54.5 54 535 57 56.5 56 R.A.[deg] R.A. (deg) R.A.(deg) LHAASO-KM2A HAWC LHAASO J2108+5157 Fermi-LAT LHAASO J0341+5258 10-1 E² dN/dE(TeV cm⁻² s⁻¹) E²dN/dE (TeV cm⁻² s⁻¹) (cm⁻² s⁻¹) 10-12 10-12 (TeV MIL 10-15 10-13 10-14 0.1 10 100 10 10 Energy (TeV) E (TeV) 10² Energy(TeV) ApJL 917:L4 (2021) ApJL 919:L22 (2021) PRL 126:241103 (2021)

LHAASO J2108+5157

http://english.ihep.cas.cn/lhaaso/index.html

Halo of PSR J0622 + 3749

LS5039

Y [AU]

- Either microquasar with relativistiv jet formation through matter accretion onto the compact object or acceleration resulting from the interaction between pulsar and star winds
- Distance = 3.5 kpc , O6.5V star and compact object with a mildly eccentric 3.9 day orbit. Mass companion star 23 M_o , mass compact object = 3.7 M_o
- From radio to TeV energies. Flux and spectral modulation as a function of its orbital period.

(Aharonian et al. 2005)

LS5039 region with Pass 5

Dezhi Huang, ICRC 2023

LS5039 with HAWC

- 1910 days of data
- Simultaneously likelihood fit performed inside the region of interest
- Model includes diffuse background emission and all background sources
- About 8 σ
- Pure powerlaw preferred
- HAWC spectrum is located in between of H.E.S.S. Inferior conjunction (INFC) and Superior conjunction (SUPC)

Dezhi Huang, ICRC 2023

